При увеличении заряда q проводника пропорционально возрастает поверхностная плотность зарядов в любой точке его поверхности: σ=kq, (25) где k — некоторая функция координат рассматриваемой точки поверхности. Потенциал поля, создаваемого заряженным проводником в однородном и изотропном диэлектрике: φ=14πεε0∫SσdSr=q4πεε0∫SkdSr (СИ), (26) φ=1ε∫SσdSr=qε∫SkdSr (СГС). (26а) Для точек поверхности S проводника интеграл зависит только от ее размеров и формы.
Потенциал φ уединенного заряженного проводника, на который не действуют внешние электростатические поля, пропорционален его заряду q. Величина C=qφ=4πεε0(∫SkdSr)−1, (СИ) (27) C=qφ=ε(∫SkdSr)−1, (СГС) (27а) называется электроемкостью (емкостью) уединенного проводника. Она численно равна заряду, изменяющему потенциал проводника на одну единицу. Емкость проводника зависит от его формы и линейных размеров. Электроемкость не зависит от материала проводника, его агрегатного состояния и прямо пропорциональна относительной диэлектрической проницаемости среды, в которой находится проводник.
Емкость уединенного шара: C=4πεε0R (СИ), (28) C=εR (СГС), (28а) где R — радиус шара, ε — относительная диэлектрическая проницаемость окружающей среды, ε0 — электрическая постоянная.
Взаимной электроемкостью двух проводников называется величина, численно равная заряду q, который нужно перенести с одного проводника на другой для того, чтобы изменить разность потенциалов между ними φ1−φ2 на единицу: C=qφ1−φ2. (29) Взаимная емкость зависит от формы, размеров и взаимного расположения проводников, а также от относительной диэлектрической проницаемости среды, в которой они находятся.
Конденсатором называется система двух разноименно заряженных равными по абсолютной величине зарядами проводников, имеющих такую форму и расположение друг относительно друга, что поле, создаваемое такой системой, сосредоточено (локализовано) в ограниченной области пространства. Сами проводники называются обкладками конденсатора. Электроемкость конденсатора является взаимной емкостью его обкладок.
Емкость плоского конденсатора: C=εε0Sd (СИ), (30) C=εS4πd (СГС), (30а) где S — площадь каждой из пластин или меньшей из них, d — расстояние между пластинами.