Рассмотрим систему проводников и связанную с ними электрическую схему, показанную на рис. 5а. Между двумя пластинами 1 и 2 располагается изолятор 3 толщиной $\Delta$ и диэлектрической проницаемостью $\varepsilon $. Когда пластины располагаются максимально близко друг к другу, т.е. расстояние $D$ почти равно нулю, на пластину 2 подается напряжение $U$, в результате на потенциальных проводниках системы появится заряд равный: $$Q_{00}=(C_v+C_w+C_{\infty}+C_{12}+C_0)\cdot U_{00},$$ где $C_1=C_v+C_w+C_{\infty}$ — сумма емкости вольтметра $C_v$, паразитной ёмкости $C_w$ проводов, соединяющих вольтметр с плоским конденсатором (включая паразитную емкость пластины 2 на близкие заземлённые проводники, которую будем считать неизменной при проведении эксперимента), и ёмкости $C_{\infty}$ пластины 2 относительно «бесконечности». При вычислении заряда $Q_{00}$ к ёмкости $C_1$ нужно прибавить ёмкость подводящих проводов $C_0$ и, собственно, взаимную ёмкость пластин $C_{12}$. Подключенный к обеим пластинам вольтметр покажет при этом величину поданного напряжения $U_{00}$. Расстояние $D$ при этом должно быть достаточно мало (см. следующий раздел), чтобы заряд был не слишком мал.

После зарядки системы, подводящие провода отключаются. При этом отключается ёмкость $C_0$ вместе с зарядом, остающимся на ней, и вольтметр показывает новое значение $U_0$, соответствующее оставшемуся заряду $$ Q_0=(C_1+C_{12}(D^*))\cdot U_0, \ \ \ \ \ (1.2.2) $$ где $D=D^*$ — расстояние, соответствующее моменту отключения проводов источника от схемы. При дальнейших манипуляциях, если можно пренебречь утечками заряда, заряд $Q_0$ сохраняется, а показания вольтметра будут изменяться с перемещением пластины 2 следующим образом: $$ U(D)=\frac{Q_0}{C(D)}, \ \ \ \ \ (1.2.3), $$ $$ C(D)=C_1+\frac{C_D\cdot C_{\Delta}}{C_D+C_{\Delta}}, \ \ \ \ \ (1.2.4) $$ Будем в дальнейших расчетах считать, что даже при больших значениях $D$ ёмкость зазора между диэлектриком и пластиной 2 может быть, с небольшими погрешностями (см. задания к работе), вычислена, используя формулу для плоского конденсатора $C=\frac{S}{4\pi\cdot \delta z}$, где $\delta z$ — расстояние между пластинами, а $S$ — площадь пластин. Связь между измеряемой величиной разности потенциалов и параметрами установки в этом случае примет вид (проверьте это выражение): $$ \frac{Q_0}{U_D}=C_1+\frac{\varepsilon S}{4\pi(\Delta +\varepsilon D)}. \ \ \ \ \ (1.2.5), СГС $$ Очевидно, что для их определения в данном эксперименте необходимо выполнить минимум три измерения, т.к. в уравнении есть три неизвестных параметра: $\varepsilon , C_1$ и $Q_0$.

Важно заметить, что формулы (1.2.4) и (1.2.5) являются почти правильными когда расстояние $D$ мало по сравнению с размерами пластин. А также категорически нельзя допускать соприкосновения подвижной пластины с диэлектриком, т.к. на его поверхность будет перенесен заряд, который потом на ней и останется. Т.о., вносить заряд в систему можно при $\sqrt{S}\gg D_0\neq 0$. Выберем, например, значение $D_0$ таким, чтобы при уменьшении $D$ до нуля, значение напряжения уменьшалось процентов на $20\%.$ После касания пластины диэлектрика, для снятия, оставшегося на его поверхности заряда, не забудьте протереть поверхность диэлектрика ладонью с зажатым в ней заземленным проводом. Ещё одно расстояние можно выбрать, увеличив $D=2D_0$ в два раза. Не забудьте делать измерение $D=0$ последним. Т.о. получится система уравнений: $D_0$, $2D_0$ и $D=0$:

$$ \frac{Q_0}{U_{D_0}}=C_1+\frac{\varepsilon S}{4\pi (\Delta + \varepsilon D_0)} \hspace{5cm} $$ $$ \frac{Q_0}{U_{2D_0}}=C_1+\frac{\varepsilon S}{4\pi (\Delta + \varepsilon 2 D_0)} \hspace{3cm} (1.2.6) $$ $$ \frac{Q_0}{U_{D=0}}=C_1+\frac{\varepsilon S}{4\pi \Delta } \hspace{5cm} $$

Решая данную систему уравнений (1.2.6), можно найти итоговые значения $\varepsilon , C_1$ и $Q_0$.

Используя полученные значения, постройте теоретический график зависимости (1.2.5) и наложите на него экспериментальные точки. Объясните различие экспериментальных и расчётных значений.

Далее "Задания"