ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Н.В. Варламов, Э.Я. Школьников

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

Часть II

Учебное пособие

Рекомендовано УМО «Ядерные физика и технологии» в качестве учебного пособия для студентов высших учебных заведений

Москва 2008

УДК 621.3.11.7(075) ББК 31.211я7 В 18

Варламов Н.В., Школьников Э.Я. Линейные электрические цепи переменного тока Часть II: Учебное пособие М.: МИФИ, 2008. – 88 с.

Учебное пособие является логическим продолжением ранее изданного учебного пособия «Линейные электрические цепи переменного тока» (авторы О.В. Гаркуша и Э.Я. Школьников, издание МИФИ 2004 г.). В учебном пособии рассматриваются: линейные электрические цепи переменного тока с взаимной индуктивностью; резонанс в линейных электрических цепях; переходные процессы в линейных электрических цепях. Каждая глава сопровождается примерами решения типовых задач.

Пособие предназначено для студентов, обучающихся на факультете «Автоматика и электроника». Оно будет полезно также студентам других факультетов, изучающим курс «Электротехника».

Пособие подготовлено в рамках Инновационной образовательной программы МИФИ.

Рецензент д-р техн. наук, профессор Стенин В.Я.

ISBN 978-5-7262-1004-9

© Московский инженерно-физический институт (государственный университет), 2008

СОДЕРЖАНИЕ

Введение)	4
Глава 1.	Электрические цепи переменного тока	
	с взаимной индуктивностью	5
1.1.	Индуктивно связанные элементы цепи	5
1.2.	Согласное и встречное соединение индуктивных элементов	7
1.3.	Коэффициент связи	. 10
1.4.	Трансформатор без ферромагнитного сердечника	. 11
Примеры		. 14
Глава 2.	Резонансы в линейных электрических цепях	. 18
2.1.	Резонанс напряжений	. 18
	2.1.1. Условия резонанса напряжений	. 18
	2.1.2. Энергетические соотношения при	
	резонансе напряжений	. 20
	2.1.3. Частотные характеристики последовательного	
	колебательного контура	. 22
	2.1.4. Добротность последовательного	
	колебательного контура	. 25
Примеры		. 27
2.2.	Резонанс токов	. 30
	2.2.1. Условие резонанса токов	. 30
	2.2.2. Энергетические соотношения при резонансе токов	. 37
	2.2.3. Частотные характеристики параллельного	
	колебательного контура	. 39
Примеры		. 42
Глава 3.	Переходные процессы в линейных электрических цепях	
	(классический метод расчета)	. 47
3.1.	Законы коммутации	. 47
3.2.	Классический метод анализа переходных процессов	. 50
3.3.	Виды начальных условий и определение порядка цепи	. 56
Примеры		. 57
3.4.	Характеристическое уравнение цепи	
	(анализ модели цепи в свободном режиме)	. 65
3.5.	Расчет переходных процессов в цепях первого порядка	
	(классическим методом)	. 74
Примеры		. 77
Список л	итературы	. 87

Введение

В учебном пособии рассматриваются линейные электрические цепи переменного тока с взаимной индуктивностью; резонанс в линейных электрических цепях; переходные процессы в линейных электрических цепях.

Для цепей переменного тока с взаимной индуктивностью рассмотрены особенности составления уравнений на основе законов Кирхгофа при наличии индуктивно связанных элементов цепи, проанализировано согласное и встречное соединение таких элементов, введено понятие коэффициента связи, дано описание модели трансформатора без ферромагнитного сердечника.

В пособии рассматриваются особенности работы линейной цепи в режиме резонанса напряжения и резонанса тока, приведены выкладки и соотношения, раскрывающие условия возникновения этих режимов и их основные характеристики, проанализированы энергетические соотношения при резонансе напряжений и резонансе токов, а также частотные характеристики последовательного и параллельного колебательных контуров.

В отличие от электрических цепей, процессы энергообмена в которых имеют установившейся характер, а параметры элементов цепи и схема их соединений остаются постоянными, на практике во многих электрических цепях происходит подключение или отключение участков цепи, а параметры элементов цепи могут резко измениться в результате воздействия. При этом в электрических цепях возникает переходный процесс, для анализа которого необходима система интегро-дифференциальных уравнений. В пособии изложен классический метод расчета переходных процессов, дано обоснование законов коммутации, рассмотрены виды начальных условий, понятие порядка цепи и алгоритм получения характеристического уравнения цепи на основе анализа модели цепи в свободном режиме.

Для формирования первичного навыка решения типовых задач в каждой главе пособия приведены примеры, которые не только позволяют освоить простейшие практические приёмы, но во многих случаях дополняют содержание теоретических разделов.

1.1. Индуктивно связанные элементы цепи

Явление наведения ЭДС в электрической цепи при изменении тока в другой цепи получило название взаимной индукции. Электрические цепи, в которых появляется этот эффект, называются индуктивно связанными цепями.

На рис. 1 изображены два витка (контура), удаленных на некоторое расстояние один от другого. По первому витку протекает ток i_1 , по второму i_2 . Зависимости токов i_1 и i_2 от времени – произвольные. На рис. 1 представлена также пространственная картина магнитных потоков, вызванных этими токами. Здесь введены следующие обозначения:

 Φ_{11} – магнитный поток, замыкающийся в первом витке, вызванный током i_1 ;

 Φ_{22} — магнитный поток, замыкающийся во втором витке, вызванный током i_2 ; Φ_{12} – магнитный поток, создаваемый в первом витке током i_1 , проходящий через второй виток;

 Φ_{21} – магнитный поток, создаваемый во втором витке током i_2 , проходящий через первый виток.

Тогда полный поток, создаваемый в первом витке током *i*₁:

$$\Phi_1 = \Phi_{11} + \Phi_{12} \,. \tag{1.1}$$

Соответственно, полный поток, создаваемый во втором витке током *i*₂:

$$\Phi_2 = \Phi_{22} + \Phi_{21}. \tag{1.2}$$

С учетом принятых обозначений, а также соотношений (1.1) и (1.2) полный ток (магнитное поле) в первом витке:

$$\Phi_{1\,\text{полн}} = \Phi_1 \pm \Phi_{21}. \tag{1.3}$$

И, соответственно, во втором витке:

$$\Phi_{2 \text{ полн}} = \Phi_2 \pm \Phi_{12} \,. \tag{1.4}$$

Знак «+» в выражениях (1.3) и (1.4) соответствует одинаковому направлению потоков, знак «-» – противоположному.

Для линейных магнитных сред (отсутствие ферромагнитных материалов) справедливо:

$$\Phi_1 = L_1 i_1, \quad \Phi_2 = L_2 i_2, \tag{1.5}$$

где, L_1 и L_2 – индуктивности первого и второго витка. Соответственно, при этих же условиях можно полагать что:

$$\Phi_{12} = M_{12} \cdot i_1, \quad \Phi_{21} = M_{21} \cdot i_2. \tag{1.6}$$

Можно показать, что коэффициенты M_{12} и M_{21} равны:

$$M_{12} = M_{21} = M . (1.7)$$

Коэффициент *М* получил название взаимной индуктивности и измеряется в Гн. С учетом (1.3)–(1.7) можно получить выражение для полных ЭДС, индуктируемых в первом и втором витках:

$$e_{1\,\text{полн}} = -\frac{d\Phi_{1\,\text{полн}}}{dt} = -L_1 \frac{di_1}{dt} \mp M \frac{di_2}{dt}; \qquad (1.8)$$

$$e_{2 \text{ полн}} = -\frac{d\Phi_{1 \text{ полн}}}{dt} = -L_2 \frac{di_2}{dt} \mp M \frac{di_1}{dt}.$$
 (1.9)

Первые члены в выражениях (1.8) и (1.9) являются ЭДС самоиндукции:

$$e_{1L} = -L_1 \frac{di_1}{dt}, \quad e_{2L} = -L_2 \frac{di_2}{dt}.$$
 (1.10)

Вторые члены в выражениях (1.8) и (1.9) получили название ЭДС взаимоиндукции:

$$e_{1M} = \mp M \frac{di_2}{dt}, \quad e_{2M} = \mp M \frac{di_1}{dt}.$$
 (1.11)

Что же касается полных напряжений, наводимых в витках, то их выражения в соответствии с (1.8) и (1.9) выглядят следующим образом:

$$u_{1 \,\text{полн}} = L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt}, \qquad (1.12)$$

$$u_{2 \text{ полн}} = L_2 \frac{di_2}{dt} \pm M \frac{di_1}{dt}.$$
 (1.13)

Отметим что выражения (1.8), (1.9), (1.12) и (1.13) остаются справедливыми, если рассматриваются любые два индуктивных элемента (катушки индуктивности). В этом случае величины L_1 , L_2 , M должны быть взяты для этих элементов.

1.2. Согласное и встречное соединение индуктивных элементов

Для определения знаков в соответствующих выражениях на схемах прибегают к условным обозначениям.

Одноименные зажимы катушек (например, северные полюса или начало обмотки) обозначают символом • (рис. 2), а сам факт индуктивной связи катушек представлен на схеме дугой с двумя стрелками и параметром М.

Знак «+» в выражениях (1.12) и (1.13) соответствует случаю, когда токи в катушках ориентированы относительно своих зажимов • одинаково (например, втекают в эти зажимы, как показано на рис. 2, *a*). В этом случае говорят, что катушки включены согласно.

Знак «–» в выражениях (1.12) и (1.13) соответствует случаю, когда токи в катушках ориентированы относительно своих зажимов • противоположно (например, i_1 – втекает, i_2 – вытекает из зажима, как показано на рис.2, δ). В этом случае говорят, что катушки соединены встречно.

В качестве примера рассмотрим схемы на рис. 3.

Рис. 3

На этом рисунке два индуктивных элемента соединены последовательно $(i_1 = i_2 = i)$. Тогда полное падение напряжения u_{12} для рис. 3,*a*:

$$u_{12} = (L_1 \frac{di}{dt} + M \frac{di}{dt}) + ir_1 + (L_2 \frac{di}{dt} + M \frac{di}{dt}) + ir_2 =$$
$$= i(r_1 + r_2) + (L_1 + L_2 + 2M) \frac{di}{dt}$$

и для рис. 36:

$$u_{12} = (L_1 \frac{di}{dt} - M \frac{di}{dt}) + ir_1 + (L_2 \frac{di}{dt} - M \frac{di}{dt}) + ir_2 =$$

= $i(r_1 + r_2) + (L_1 + L_2 - 2M) \frac{di}{dt}.$ (1.14)

Остается добавить, что в первом случае катушки соединены согласно, во втором – встречно.

Пусть токи в цепи (как и напряжение) изменяются со временем следующим образом:

$$i(t) = I_m \sin(\omega t + \varphi)$$
.

Тогда ток i(t) можно представить:

$$i(t) = \operatorname{Im}[\dot{I}e^{j\omega t}],$$

где \dot{I} – так называемая комплексная амплитуда тока $\dot{I} = I_m e^{j\phi}$.

Выражение для комплексной амплитуды падения напряжения от взаимной индукции $u = M \frac{di}{dt}$ в этом случае можно представить в следующем виде:

$$\dot{U} = j \omega M \dot{I}$$
.

Здесь $j \oplus M$ можно рассматривать как комплексное сопротивление взаимной индукции, которое в радиотехнике называют сопротивлением связи.

Для схем, представленных на рис. 3, в случае гармонического тока комплексные амплитуды падения напряжения на зажимах 1–2 получаются следующим образом.

Для рис. 3,*a*: $\dot{U}_{12} = (j\omega L_1 \dot{I} + j\omega M \dot{I}) + r_1 \dot{I} + (j\omega L_2 \dot{I} + j\omega M \dot{I}) + r_2 \dot{I} =$ $= (r_1 + r_2) \dot{I} + j\omega (L_1 + L_2 + 2M) \dot{I}.$ (1.15)

Для рис.36:

$$\dot{U}_{12} = (j\omega L_1 \dot{I} - j\omega M \dot{I}) + r_1 \dot{I} + (j\omega L_2 \dot{I} - j\omega M \dot{I}) + r_2 \dot{I}$$
$$= (r_1 + r_2) \dot{I} + j\omega (L_1 + L_2 - 2M) \dot{I}.$$

1.3. Коэффициент связи

Помимо взаимной индуктивности M степень индуктивной связи двух катушек характеризуют с помощью так называемого коэффициента связи K_{cb} , который определяется следующим образом (см. рис.1):

$$K_{\rm CB} = \sqrt{\frac{\Phi_{12}}{\Phi_1} \cdot \frac{\Phi_{21}}{\Phi_2}} \,. \tag{1.16}$$

Здесь в числителе стоят магнитные потоки, пошедшие на взаимную индукцию, а в знаменателе магнитные потоки в контурах, вырабатываемые их собственными токами. Учитывая, что $\Phi_{12} = Mi_1$, $\Phi_{21} = Mi_2$, $\Phi_1 = L_1i_1$, $\Phi_2 = L_2i_2$ и подставляя эти выражения в (1.16) получим:

$$K_{\rm cB} = \sqrt{\frac{Mi_1}{L_1 i_1} \cdot \frac{Mi_2}{L_2 i_2}} = \frac{M}{\sqrt{L_1 L_2}} \,. \tag{1.17}$$

Из формулы (1.16) следует, что $K_{\rm cB}$ всегда меньше единицы, так как $\Phi_{12} \leq \Phi_1$, а $\Phi_{21} \leq \Phi_2$. Таким образом, для $K_{\rm cB}$ справедливо:

$$0 \le K_{\rm CB} \le 1$$
. (1.18)

Случай расположения катушек, когда K_{cB} близок к 1, изображен на рис. 4,*a*. Это достигается бифилярным способом намотки катушек. Напротив, значение K_{cB} близко к 0, для случая рис. 4,*б*, когда оси катушек расположены перпендикулярно друг к другу.

С введением коэффициента связи можно легко показать, что величина (L_1+L_2-2M), стоящая в выражениях (1.14) и (1.15), всегда положительна.

Образуем неравенство:

$$\left(\sqrt{L_1} - \sqrt{L_2}\right)^2 \ge 0$$

$$L_1 + L_2 - 2\sqrt{L_1L_2} \ge 0, \quad L_1 + L_2 \ge 2\sqrt{L_1L_2}. \quad (1.19)$$

или

Из (1.17) получим $\sqrt{L_1 L_2} = \frac{M}{K_{cB}}$. Подставляем это в (1.19):

$$L_1 + L_2 \ge 2\frac{M}{K_{\rm cB}} \,. \tag{1.20}$$

Так как $K_{cB} \le 1$, то неравенство (1.20) только усилится, если:

$$L_1 + L_2 \geq 2M$$
.

Откуда получаем искомое доказательство:

$$L1+L2-2M\geq 0.$$

1.4. Трансформатор без ферромагнитного сердечника

На рис. 5 изображена схема линейной электрической цепи, содержащая схему замещения трансформатора без ферромагнитного сердечника в случае гармонических токов и напряжений.

Трансформатор содержит в данном случае индуктивно связанные обмотки, включенные встречно (что, впрочем, не имеет принципиального значения).

В соответствии со вторым законом Кирхгоффа уравнения для первичного и вторичного контуров выглядят следующим образом:

$$\dot{U}_{1} = (r_{1} + j\omega L_{1})\dot{I}_{1} - j\omega M\dot{I}_{2},$$

$$-\dot{U}_{2} = (r_{2} + j\omega L_{2})\dot{I}_{2} - j\omega M\dot{I}_{1}.$$
 (1.21)

Добавим и вычтем в правой части второго уравнения *j* ωM_2 и перегруппировав члены уравнений, получим:

$$\dot{U}_{1} = X[r_{1} + j\omega(L_{1} - M) + j\omega M]\dot{I}_{1} - j\omega M\dot{I}_{2},$$

$$-\dot{U}_{2} = -j\omega M\dot{I}_{1} + [r_{2} + j\omega(L_{2} - M) + j\omega M]\dot{I}_{2}.$$
(1.22)

Систему (1.22) можно рассматривать как систему уравнений, составленных по методу контурных токов для электрической цепи, содержащей два контура с контурными токами \dot{I}_1 и \dot{I}_2 . Схема этой цепи представлена на рис. 6.

Таким образом, данная схема может рассматриваться в качестве схемы замещения (эквивалентной схемы) трансформатора без фер-

ромагнитного сердечника. В отличие от схемы рис. 5 в данной схеме первичные и вторичные цепи трансформатора связаны не индуктивно, а электрически.

Подобный прием, связанный с переходом от индуктивной и кондуктивной (электрической) связи дает возможность непосредственно применять для расчета цепей, содержащих трансформаторы, методы контурных токов и узловых напряжений по разработанным алгоритмам.

В заключение этого раздела рассмотрим понятие «входное сопротивление» трансформатора. Если нагрузка $Z_{\rm H}$, как это изображено на рис. 5, присоединена к источнику \dot{E} не непосредственно, а через трансформатор, то в соответствии с (1.21):

$$\dot{U}_{1} = (r_{1} + j\omega L_{1})\dot{I}_{1} \pm j\omega M\dot{I}_{2},$$

$$0 = \pm j\omega M\dot{I}_{1} + (r_{2} + j\omega L_{2} + Z_{H})\dot{I}_{2}.$$
 (1.23)

В системе (1.23) учитывается как согласное (знак +), так и встречное соединение обмоток трансформатора (знак «--»).

Из второго уравнения системы (1.23) получим:

$$\dot{I}_2 = \frac{\mp j\omega M \dot{I}_1}{r_2 + j\omega L_2 + Z_{\rm H}}$$

Подставляя значение \dot{I}_2 в первое уравнение системы (1.23) получим выражение для входного сопротивления трансформатора:

$$Z_{1_{\text{BX}}} = \frac{\dot{U}_1}{\dot{I}_1} = r_1 + j\omega L_1 + \frac{(\omega M)^2}{r_2 + j\omega L_2 + Z_{\text{H}}}.$$
 (1.24)

Последнее слагаемое в выражении (1.24) можно трактовать как комплексное сопротивление, вносимое из вторичной цепи в первичную. Это иллюстрирует рис. 7, где изображены две эквивалентные схемы 7, a и 7,b.

Анализируя выражение (1.24), можно отметить, что включение трансформатора между источником и нагрузкой трансформирует (изменяет) входное сопротивление цепи: $Z_{\rm H}$ без трансформатора и $Z_{\rm 1BX}$ в соответствии с (1.24) при наличии трансформатора.

Следует обратить также внимание, что входное сопротивление трансформатора не зависит от способа включения его обмоток (согласного или встречного).

Примеры

Задача 1.1

Составить уравнения по законам Кирхгофа для схемы электрической цепи, изображенной на рис.8.

Решение:

Схема содержит четыре узла. Соответственно линейнонезависимые уравнения по первому закону Кирхгофа для узлов *I*, *2*, *3* выглядят следующим образом:

$$\dot{I}_1 - \dot{I}_2 - \dot{I}_3 = 0,$$

$$\dot{I}_2 - \dot{I}_6 - \dot{I}_4 = 0,$$

$$\dot{I}_3 + \dot{I}_6 - \dot{I}_5 - \dot{J} = 0$$

Уравнения по второму закону Кирхгофа относительно независимых контуров *1*, *2*, *3* (обход контуров по часовой стрелке) представляются в следующем виде:

$$r_{1}\dot{I}_{1} + j\omega L_{1}\dot{I}_{2} - j\omega M\dot{I}_{4} + j\omega L_{2}\dot{I}_{4} - j\omega M\dot{I}_{2} = \dot{E},$$

$$\frac{1}{j\omega C_{1}}\dot{I}_{3} - r_{2}\dot{I}_{6} - (j\omega L_{1}\dot{I}_{2} - j\omega M\dot{I}_{4}) = 0,$$

$$r_{6}\dot{I}_{6} + \frac{1}{j\omega C_{2}}\dot{I}_{5} - (j\omega L_{2}\dot{I}_{4} - j\omega M\dot{I}_{2}) = 0.$$

В данном случае индуктивно связанные элементы *L*₁ и *L*₂ соединены встречно.

Рис. 9

Для схемы электрической цепи, изображенной на рис.9, известно: \dot{E} , M, x_1 , x_2 , r_1 , r_2 , ω , $r_{\rm H}$. Составить уравнения для определения токов \dot{I}_1 и \dot{I}_2 .

Решение:

Схема на рис. 9 является эквивалентной схемой автотрансформатора с подвижным контактом. Обозначение обмоток как $x_1 r_1 u x_2 r_2$ означает последовательное соединение индуктивного элемента и резистора; при этом x_1 и x_2 – индуктивные сопротивления (рис. 10).

В соответствии со вторым законом Кирхгофа для левого и правого контуров (обход контуров *I* и *2* по часовой стрелке):

$$r_{1}\dot{I}_{1} + [jx_{1}\dot{I}_{1} - j\omega M(\dot{I}_{1} + \dot{I}_{2})] + r_{2}\dot{I}_{2} + [jx_{2}(\dot{I}_{1} + \dot{I}_{2}) - j\omega M\dot{I}_{1}] = \dot{E};$$

- $r_{H}\dot{I}_{2} - [r_{2}(\dot{I}_{1} + \dot{I}_{2}) + jx_{2}(\dot{I}_{1} + \dot{I}_{2}) - j\omega M\dot{I}_{1}] = 0.$

Задача 1.3

На рис. 11 изображена так называемая схема Бушеро. Известно: \dot{U} , x_1 , x_2 , x_c , K_{cB} . При этом $x_1 = x_2 = x_c = x$. Показать, что ток в нагрузке \dot{I}_2 не зависит от сопротивления нагрузки $r_{\rm H}$.

Решение:

Как и в предыдущем случае x_1 и x_2 – индуктивные сопротивления катушек $x_1 = \omega L_1$, $x_2 = \omega L_2$, x_c – емкостное сопротивление $x_c = \frac{1}{\omega C}$. Так как в уравнения войдет параметр M – взаимная индуктивность, выразим его через известные значения x_1 , x_2 и K_{cB} :

$$K_{\rm cb} = \frac{M}{\sqrt{L_1 L_2}} = \frac{\omega M}{\sqrt{\omega L_1 \cdot \omega L_2}} = \frac{\omega M}{K_{\rm cb} \sqrt{x_1 x_2}},$$

так как $x_1 = x_2 = x$, то

$$\omega M = K_{\rm CB} x \,. \tag{1.25}$$

В соответствии со вторым законом Кирхгофа, уравнение для первого контура будет выглядеть следующим образом:

$$\dot{U} = \dot{I}_1 j x_1 - \dot{I}_2 j \omega M - (\dot{I}_1 - \dot{I}_2) \cdot \frac{x_c}{j}.$$

Здесь предполагается, что в соответствии с первым законом Кирхгофа ток через емкостной элемент равен $\dot{I}_1 - \dot{I}_2$. Подставляя в последнее уравнение значение ωM через $K_{\rm cB}x$ из (1.25) и учитывая, что $x_1 = x_2 = x_{\rm c} = x$, получаем:

$$\dot{U} = -\dot{I}_2 j K_{\rm CB} x + \dot{I}_2 j x \,.$$

Отсюда:

$$\dot{I}_2 = \frac{\dot{U}}{jx(1-K_{\rm CB})}.$$

Как видно из последнего выражения, которое представляет ток в нагрузке, оно действительно не зависит от сопротивления нагрузки $r_{\rm H}$.

2.1. Резонанс напряжений

2.1.1. Условия резонанса напряжений

Это явление наблюдается в электрической цепи с последовательным соединением участков, содержащих индуктивности и емкости. Условием резонанса напряжения является:

$$\operatorname{Im} Z = 0, \qquad (2.1)$$

где Z представляет собой полное комплексное сопротивление цепи.

Исследование резонанса напряжений будем проводить на примере простейшей цепи с последовательным соединением *r*, *L*, *C*, так называемого последовательного колебательного контура (рис. 12).

Рис. 12

Комплексное сопротивление этой цепи равно:

$$Z = r + j \left(\omega L - \frac{1}{\omega C} \right).$$

В соответствии с (2.1) резонанс напряжений наступает в цепи, если

$$\omega L - \frac{1}{\omega C} = 0. \qquad (2.2)$$

Из последнего выражения определяется так называемая резонансная частота, т.е. частота, при которой в рассматриваемой цепи возникает резонанс напряжений:

$$\omega_0 = \frac{1}{\sqrt{LC}} \,. \tag{2.3}$$

Выражение для амплитуды тока в последовательном колебательном контуре выглядит следующим образом:

$$I = |\dot{I}| = \frac{|\dot{E}|}{|Z|} = \frac{E}{\left|r + j\left(\omega L - \frac{1}{\omega C}\right)\right|}$$

В режиме резонанса напряжения Im Z = 0, |Z| достигает минимума, равного *r*, а амплитуда тока достигает максимума и становиться равной I_0 :

$$I_0 = \frac{E}{r} \, .$$

В контурах с малыми потерями при $r \rightarrow 0$ амплитуда тока может достигать весьма больших значений. Это и объясняет то обстоятельство, что рассматриваемый режим работы цепи получил название резонанса.

Комплексные амплитуды напряжения на индуктивности и емкости на резонансе соответственно равны:

$$\dot{U}_{L_0} = j\omega_0 L \dot{I}_0 = \omega_0 L \dot{I}_0 e^{j\frac{\pi}{2}},$$

$$\dot{U}_{C_0} = \frac{1}{j\omega_0 C} \dot{I}_0 = \frac{1}{\omega_0 C} \dot{I}_0 e^{-j\frac{\pi}{2}}.$$
 (2.4)

Так как в режиме резонанса напряжения в соответствии с (2.2) индуктивное и емкостное сопротивления равны, то из (2.4) следует:

$$\dot{U}_{L_0} = -\dot{U}_{C_0}$$

что иллюстрируется векторной диаграммой, изображенной на рис. 13.

Подобное соотношение, которое устанавливается между \dot{U}_L и \dot{U}_C в режиме резонанса напряжений объясняет наличие термина «напряжение» в названии данного режима.

Рис. 13

Следствием равенства $\dot{U}_{L_0} = -\dot{U}_{C_0}$ является тот факт, что напряжение на участке цепи L - C в резонансе напряжений равно нулю:

$$\dot{U}_{L-C_0} = \dot{U}_{L_0} - \dot{U}_{C_0} = 0$$

Последнее равенство свидетельствует о весьма интересной картине, когда напряжение на отдельных элементах цепи (в данном случае на L и C) существует, а на участке цепи, содержащем их последовательное соединение, равно нулю.

Таким образом, в режиме резонанса напряжений эквивалентная

схема цепи, изображенная на рис. 12, выглядит следующим образом (рис. 14).

Это же непосредственно следует из равенства (2.2), иллюстрирующего условие резонанса напряжений: реактивная часть комплексного сопротивления цепи в этом случае обращается в ноль.

2.1.2. Энергетические соотношения при резонансе напряжений

Рассмотрим вопрос о распределении энергии между элементами электрической цепи (рис. 12) в режиме резонанса напряжений.

Пусть в этом режиме ток в цепи выражается как

$$i(t) = I_m \cos \omega_0 t$$
.

Соответственно, напряжение на емкости:

$$U_C(t) = U_{C_m} \cos\left(\omega_0 t + \frac{\pi}{2}\right) = U_{C_m} \sin \omega_0 t \, .$$

Мгновенные значения энергии магнитного и электрического полей соответственно равны:

$$W_{L}(t) = \frac{LI_{m}^{2}}{2} \cos^{2} \omega_{0} t = W_{L_{\text{max}}} \cos^{2} \omega_{0} t ,$$

$$W_{C}(t) = \frac{CU_{Cm}^{2}}{2} \sin^{2} \omega_{0} t = W_{C_{\text{max}}} \sin^{2} \omega_{0} t .$$
(2.5)

Покажем, что при резонансе напряжений максимумы энергии магнитного поля в индуктивном $W_{L_{\text{max}}} = \frac{LI_m^2}{2}$ и электрического поля в емкости $W_{C_{\text{max}}} = \frac{CU_{Cm}^2}{2}$ равны.

В самом деле, рассмотрим разность:

$$\Delta W_{LC_{\max}} = W_{L_{\max}} - W_{C_{\max}} = \frac{LI_m^2}{2} - \frac{CU_{Cm}^2}{2} = \frac{1}{2\omega_0} \left[\omega_0 LI_m^2 - \omega_0 CU_{Cm}^2 \right].$$

Вынесем за скобки $\omega_0 C$ и учтем, что при резонансе напряжений $\omega_0 L = \frac{1}{\omega_0 C}$, тогда:

$$\Delta W_{LC_{\max}} = \frac{C}{2} \left[\left(\omega_0 L I_m^2 \right)^2 - U_{Cm}^2 \right]. \tag{2.6}$$

В рассматриваемом режиме, как было показано выше, между величинами \dot{U}_L и \dot{U}_C существует соотношение: $\dot{U}_L = -\dot{U}_C$. Так как $U_{L_{\text{max}}} = |\dot{U}_L|$, а $U_{Cm} = |\dot{U}_C|$, то из этого следует, что в резонансе напряжений $U_{Lm} = U_{Cm}$. Принимая это во внимание, а также, что $U_{Lm} = \omega_0 LI_m$, можно заключить, что

$$\Delta W_{LC_{\max}} = 0 ,$$

что и доказывает искомое утверждение.

На рис. 15 изображены зависимости величин W_L и W_C от времени t.

Как следует из рис. 15 при резонансе напряжений происходит непрерывное перераспределение энергии (энергообмен) магнитного поля в индуктивности и энергии электрического поля в емкости. При этом суммарная энергия:

$$W_{LC} = W_L + W_C = \frac{LI_m^2}{2} \left[\cos^2 \omega_0 t + \sin^2 \omega_0 t\right] = \frac{LI_m^2}{2} = \frac{CU_{Cm}^2}{2}.$$

Таким образом, в режиме резонанса напряжений периодически происходит равный энергообмен между индуктивным и емкостным элементом, когда энергия, первоначально накопленная в контуре, «колеблется» между L и C, без участия в этом процессе источника. При этом вся электрическая энергия, поступающая в цепь в режиме резонанса напряжений, расходуется в сопротивлении. Для контура без потерь (r = 0) в режиме резонанса в цепь не поступала бы энергия от источника.

2.1.3. Частотные характеристики последовательного колебательного контура

Комплексное сопротивление последовательного контура (см. рис.12) можно представить в следующем виде:

$$Z = r + j \left(\omega L - \frac{1}{\omega C} \right) = r + j \omega_0 L \left[\frac{\omega}{\omega_0} - \frac{1}{\omega \omega_0 LC} \right] =$$

= $r + j \omega_0 L \left[\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right].$ (2.7)

С другой стороны, $\dot{E} = Z \cdot \dot{I}$, а $Z = |Z| e^{j\phi}$, где ϕ – фазовый сдвиг приложенного напряжения относительно тока. В соответствии с (2.7):

$$\varphi = \arg \operatorname{tg} \frac{\omega_0 L}{r} \left[\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right].$$
 (2.8)

Последнее выражение называется фазочастотной или фазовой характеристикой (ФЧХ) последовательного колебательного контура.

Эта же зависимость представлена в виде графика $\phi(\omega)$ на рис. 16.

Зависимость $\phi(\omega)$ обращается в ноль при $\omega = \omega_0$, что соответствует режиму цепи (резонанс напряжений), который иллюстрирует рис. 14. Для $\omega < \omega_0$ величина ϕ становится отрицательной, что соответствует емкостному характеру цепи, а для $\omega > \omega_0$ величина ϕ является положительной, что соответствует индуктивному характеру цепи.

Зависимость амплитуд тока и напряжений на емкостном и индуктивном элементах цепи называют амплитудно-частотными характеристиками (АЧХ) последовательного колебательного контура.

Выражения для этих значений можно представить в следующем виде:

На рис. 17 представлены зависимости этих величин от частоты.

Как и следовало ожидать, ток достигает максимума, равного $\frac{E}{r}$, в режиме резонанса напряжений ($\omega = \omega_0$). В этом же режиме $U_L = U_C$. При ω стремящейся к нулю и ω стремящейся к бесконечности, ток стремится к нулю. Это связано с тем обстоятельством, что в первом случае неограниченно возрастает емкостное, а во втором случае индуктивное сопротивление контура. Из выражения (2.1) следует, что настройка контура в резонанс может достигаться за счет изменения частоты генератора, индуктивности или емкости элементов цепи. Первый вариант рассмотрен выше и иллюстрируется рис. 16, 17.

На рис. 18 изображены зависимости тока в последовательном колебательном контуре от индуктивности и емкости цепи.

При значении $L = L_{pes} = \frac{1}{\omega_0^2 C}$ цепь переходит в режим резонан-

са напряжений. Такая же ситуация происходит при $C = C_{pes} = \frac{1}{\omega_0^2 L}$.

2.1.4. Добротность последовательного колебательного контура

По определению добротность колебательного контура – это величина, которая определяется следующим выражением:

$$Q = \omega_0 \frac{W_{\text{max}}}{P} \,. \tag{2.9}$$

где W_{max} – максимальная энергия, запасенная в контуре на резонансной частоте, P – мощность активных потерь при тех же условиях.

На резонансе напряжений

$$W_{\text{max}} = W_{L_{\text{max}}} = W_{C_{\text{max}}} = \frac{LI_0^2}{2} = \frac{CU_{Cm}^2}{2}$$
. В то же время $P = \frac{I_0^2 r}{2}$.

Таким образом, выражение для добротности контура приобретает следующий вид:

$$Q = \frac{\omega_0 L}{r} = \frac{1}{\omega_0 Cr} = \frac{\sqrt{\frac{L}{C}}}{r} = \frac{\rho}{r}, \qquad (2.10)$$

где величина $\rho = \sqrt{\frac{L}{C}}$ получила название характеристического сопротивления контура.

Из выражения (2.10) следует, что добротность характеризует степень превышения реактивных сопротивлений $\omega_0 L$ и $\frac{1}{\omega_0 C}$ над активным сопротивлением *r*.

Учитывая, что при резонансе $\dot{U}_{L_0} = -\dot{U}_{C_0} = j\omega_0 L\dot{I}_0$, а $I_0 = \frac{E}{r}$ в соответствии с (2.10), получим:

$$\dot{U}_{L_0} = -\dot{U}_{C_0} = \frac{E}{r} j\omega_0 L = jEQ$$
. (2.11)

Из (2.11) следует, что

$$Q = \frac{U_{L_0}}{E} = \frac{U_{C_0}}{E}.$$
 (2.12)

Таким образом, добротность рассматриваемого контура определяется отношением напряжения на L или C при резонансе к величине приложенного к контуру напряжения.

На рис. 19 изображены зависимости амплитуды тока от частоты для двух последовательных колебательных контуров с одинаковой резонансной частотой и разными значениями добротности, причем $Q_1 > Q_2$. Таким образом, как это следует из рис. 19, добротность

может характеризовать также степень «остроты» резонансной кривой тока вблизи резонансной частоты в последовательном колебательном контуре.

Примеры

Задача 2.1

В схеме электрической цепи рис. 12 r = 10 [Ом], L = 1 [Гн], C = 1 [мкФ]. Определить резонансную частоту ω_0 , добротность контура Q, а также амплитуду синусоидального напряжения на емкости U_C , если на вход цепи подано синусоидальное напряжение с амплитудой 10 мВ на резонансной частоте.

Решение:

В соответствии с (2.3) резонансная частота контура $\omega_0 = \frac{1}{\sqrt{LC}} = 10^3$ рад/с. В соответствии с (2.10) добротность контура $Q = \frac{\omega_0 L}{r} = 100$. В соответствии с (2.12) амплитуда напряжения на емкости $U_C = Q \cdot E = 1$ В.

Задача 2.2

Цепь, схема которой изображена на рис. 20, находится в режиме резонанса напряжений. Значение резонансной частоты $f_0 = 50$ Гц. Значение соответствующих амплитуд напряжений и тока в контуре: U = 220 В, $U_{rL} = 204$ В, $U_C = 180$ В, I = 4 А. Определить параметры индуктивной катушки – r, L, емкость C и сопротивление r_1 .

Решение:

1. На резонансе напряжений $U_C = U_L$ и $\omega_0 LI = U_L$, отсюда $L = \frac{U_C}{2\pi f_0 I} = 0,143$ Гн .

2. Напряжение на емкости

емкости $U_C = I \frac{1}{\omega_0 C}$, отсюда

$$C = \frac{I}{2\pi f_0 U_C} = 70,8$$
 мкФ.

3. Комплексная амплитуда напряжения на катушке $\dot{U}_{rL} = \dot{I}(r + j\omega_0 L)$. Отсюда $r = \left[\left(\frac{U_{rL}}{I} \right)^2 - (2\pi f_0 L)^2 \right]^{1/2} = 24$ Ом. 4. В резонансе напряжений (в соответствии с рис. 2 и 3)

4. В резонансе напряжении (в соответствии с рис. 2 и з) $U = I(r_1 + r)$ отсюда $r_1 = \frac{U}{I} - r = 31$ Ом.

Задача 2.3

При частоте f = 50 Гц сопротивление катушки равно 41 Ом, а при постоянном токе – 9 Ом. При какой частоте наступает резонанс, если последовательно с катушкой включен конденсатор емкостью C = 51 мкФ?

Решение:

Комплексное сопротивление катушки (последовательное соединение *r* и *L*) равно:

$$Z = r + j\omega L$$
.

При частоте f = 50 Гц сопротивление катушки равно 41 Ом, т.е. |Z| = 41 Ом, следовательно $41 = \sqrt{r^2 + (\omega L)^2}$, откуда $L = \frac{1}{2\pi f} \sqrt{|Z|^2 - r^2} = 0,127$ Гн. Резонансная частота $f_0 = \frac{1}{2\pi \sqrt{LC}} = 62,5$ Гц.

Задача 2.4

Последовательный колебательный контур подключен к синусоидальной ЭДС с амплитудой E = 1,6 В и внутренним сопротивлением R = 16 Ом. При какой величине сопротивления контура r в нем вылелится максимальная актив-

ная мощность при резонансе напряжений и чему она будет равна?

Решение:

В режиме резонанса напряжений контур эквивалентен активному сопротивлению *г*. Поэтому в данном режиме цепь будет содержать источник ЭДС с внутренним сопротивлением и активное сопротивление контура (рис. 21).

В соответствии с теоремой о максимальной активной мощности в нагрузке, в нагрузке выделится максимальная активная мощность, если $Z_{\Gamma} = Z_{H}^{*}$, где Z_{Γ} и Z_{H} комплексные сопротивления генератора и нагрузки соответственно. Так как в данном случае $Z_{\Gamma} = R$, а $Z_{H} = r$, то при r = R = 16 Ом в активном сопротивлении контура при резонансе будет выделяться максимальная активная мощность:

$$P = I_g^2 \cdot r = \left(\frac{E_{\pi}}{R+r}\right)^2 \cdot r ,$$

где $I_{\rm d}$ и $E_{\rm d}$ – действующие значения переменного тока и ЭДС: $I_g = \frac{I}{\sqrt{2}}x$, $E_g = \frac{E}{\sqrt{2}}x$. Отсюда P = 20 мВт.

2.2. Резонанс токов

2.2.1. Условия резонанса тока

Это явление может возникать в электрической цепи, которая содержит параллельные ветви, причем в одной из ветвей имеется индуктивная катушка (или индуктивный элемент), а в другой конденсатор (или емкостной элемент). Резонанс токов достигается при выполнении условия:

$$Im Y = 0$$
, (2.13)

где *Y* – комплексная проводимость участка цепи (содержащего указанные параллельные ветви).

Рассмотрим простейшую модель участка электрической цепи (рис. 22) с тремя параллельными ветвями. В одной ветви резистивный элемент с сопротивлением r (и соответственно с проводимостью $g = \frac{1}{r}$). Во второй ветви имеется индуктивный элемент, индуктивность которого L, а в третьей ветви – емкостной элемент, емкость которого C.

Комплексная проводимость участка равна:

$$Y = g + \frac{1}{j\omega L} + j\omega C = g - j\left(\frac{1}{\omega L} - \omega C\right).$$
 В соответствии с (2.13)

резонанс токов наступает, когда: $\frac{1}{\omega L} - \omega C = 0$. Это уравнение имеет один вещественный корень $\omega_0 = \frac{1}{\sqrt{LC}}$. Очевидно, что полученное значение резонансной частоты при резонансе токов совпадает со значением резонансной частоты в последовательном контуре при резонансе напряжений (см. формулу (2.3)). Важно отметить, что на резонансной частоте проводимость всего участка является вещественной $Y(\omega_0) = g$!

Пусть к рассматриваемому участку приложено напряжение \dot{U} и по параллельным ветвям, соответственно, протекают токи \dot{I}_g , \dot{I}_L , \dot{I}_C , причем общий ток $\dot{I} = \dot{I}_g + \dot{I}_L + \dot{I}_C$ (согласно первому закону Кирхгофа).

Сохраняя неизменное значение амплитуды приложенного напряжения, проанализируем, как будут меняться токи и проводимости ветвей и всего участка при изменении частоты ω .

Комплексную амплитуду тока можно выразить через комплексную амплитуду приложенного напряжения \dot{U} и комплексную проводимость *Y* всего участка: $\dot{I} = \dot{U} \cdot Y = \dot{U} \left[g - j \left(\frac{1}{\omega L} - \omega C \right) \right]$. Поскольку при резонансе токов $Y(\omega_0) = g$ получаем:

$$\dot{I} = \dot{U} \cdot g \ . \tag{2.14}$$

Это означает, что комплексная амплитуда тока и напряжения прямо пропорциональны, векторы \dot{I} и \dot{U} направлены вдоль одной прямой, а потому нет сдвига фаз между общим током и приложенным напряжением. Последний из перечисленных признаков по существу является определением (условия) резонанса в электрических цепях.

Оценим амплитуду общего тока:

$$I = |\dot{I}| = |\dot{U}| \cdot |Y| = U \left| g - j \left(\frac{1}{\omega L} - \omega C \right) \right|.$$

При резонансе токов Im Y = 0, поэтому минимальным будет |Y| = g. Это означает, что амплитуда тока $I_0 = U \cdot g$ оказывается наименьшей (по сравнению с амплитудой тока на любых других частотах $\omega \neq \omega_0$). Кроме того, важно отметить, что из соотношения (2.14) следует, что при резонансе токов $\dot{I} = \dot{I}_g$, т.е. общий ток совпадает с током через ветвь с резистивным элементом. Проводимость ветви с индуктивным элементом обозначим $y_L = \frac{1}{j\omega L} = -j\frac{1}{\omega L} = -j \cdot b_L$, где $b_L = \frac{1}{\omega L}$ – индуктивная проводимость. Проводимость ветви с емкостным элементом обозначим обозначим

 $y_C = j\omega C = j \cdot b_C$, где $b_C = \omega C$ – емкостная проводимость. Комплексные амплитуды токов в ветвях с индуктивным и емкостным элементом, соответственно, можно представить так:

$$\dot{I}_{L} = \dot{U} \cdot y_{L} = \dot{U} \cdot \frac{1}{j\omega L} = \frac{1}{\omega L} \cdot \dot{U} \cdot e^{-j\frac{\pi}{2}}, \qquad (2.15)$$
$$\dot{I}_{C} = \dot{U} \cdot y_{C} = \dot{U} \cdot j\omega C = \omega C \dot{U} \cdot e^{j\frac{\pi}{2}}.$$

Эти соотношения показывают, что векторы \dot{I}_L и \dot{I}_C противоположно направлены, и поскольку при резонансе $\frac{1}{\omega_0 L} = \omega_0 C$, векторы \dot{I}_L и \dot{I}_C будут иметь одинаковую длину. Комплексные амплитуды токов можно записать следующим образом¹:

¹ Термин «характеристическое сопротивление контура $\rho = \sqrt{\frac{L}{C}}$ », введенный при рассмотрении резонанса напряжений, используется и для резонанса токов.

$$\dot{I}_{L} = -\dot{I}_{C} = -\omega_{0}C\dot{U} \cdot e^{j\frac{\pi}{2}} = -\frac{\dot{U}}{\sqrt{\frac{L}{C}}} \cdot e^{j\frac{\pi}{2}} = -\frac{\dot{U}}{\rho}e^{j\frac{\pi}{2}}.$$
 (2.16)

Характерная для резонанса токов векторная диаграмма изображена на рис. 23.

Эта диаграмма выявляет особенности в соотношении, связывающем комплексные амплитуды токов: $\dot{I}_0 = \dot{I}_g + (\dot{I}_L + \dot{I}_C) = \dot{I}_g$, так как при резонансе токов $(\dot{I}_L + \dot{I}_C) = 0$.

Соотношения (2.15), (2.16) и векторная диаграмма показывают, что при

резонансе амплитуды токов I_L и I_C могут быть много больше ам-

плитуд токов I_0 и I_g . Это условие выполняется, когда $\sqrt{\frac{L}{C}} << r$:

$$I_{L} = I_{C} = \frac{|\dot{U}|}{\sqrt{\frac{L}{C}}} \Longrightarrow \frac{|\dot{U}|}{r} = I_{g} = I_{0}.$$
(2.17)

Таким образом, в режиме резонанса токов по параллельным ветвям с индуктивным и емкостным элементами, соответственно, протекают равные по величине и противоположные по знаку токи, амплитуды которых могут существенно превосходить амплитуду общего тока. Фактически, внутри контура, образованного двумя указанными ветвями, циркулирует ток $I_{LC} = I_L = I_C$, который не вытекает из этого контура (замкнут в нем).

Поэтому рассматриваемый участок электрической цепи, изображенной на рис. 22, можно заменить при резонансе токов более простым эквивалентным участком (рис. 24).

На рис. 24 пунктиром указан *L*-*C*-контур, по которому циркулирует ток I_{LC} . Этот контур не влияет на работу остальной цепи, так

Рассмотренная модель электрической цепи с параллельным контуром позволила получить простые соотношения между токами в ветвях и приложенным напряжением, простую формулу для резонанса частоты ω_0 , наглядную векторную диаграмму, элементарную эквивалентную схему участка цепи в режиме резонанса. Вместе с тем эта модель не учитывает активные потери в ветвях с реактивными элементами и имеет ряд других ограничений. Поэтому рассмотрим более значимые для практики модели, схемы которых изображены на рис. 25 и рис. 26.

Для модели электрической цепи, схема которой изображена на рис.25, полная комплексная проводимость У складывается из проводимостей *Y*₁ и *Y*₂ первой и второй ветви соответственно:

$$Y_{1} = \frac{1}{r_{1} + j\omega L} = \frac{r_{1} - j\omega L}{r_{1}^{2} + (\omega L)^{2}} = \frac{r_{1}}{r_{1}^{2} + (\omega L)^{2}} - j\frac{\omega L}{r_{1}^{2} + (\omega L)^{2}},$$
$$Y_{2} = \frac{1}{r_{2} - j\frac{1}{\omega C}} = \frac{r_{2} + j\frac{1}{\omega C}}{r_{2}^{2} + \left(\frac{1}{\omega C}\right)^{2}} = \frac{r_{2}}{r_{2}^{2} + \left(\frac{1}{\omega C}\right)^{2}} + j\frac{\frac{1}{\omega C}}{r_{2}^{2} + \left(\frac{1}{\omega C}\right)^{2}}.$$

Сгруппировав члены вещественной и мнимой части для проводимости У получаем:

$$Y = Y_{1} + Y_{2} = \left[\frac{r_{1}}{r_{1}^{2} + (\omega L)^{2}} + \frac{r_{2}}{r_{2}^{2} + \left(\frac{1}{\omega C}\right)^{2}}\right] - j\left[\frac{\omega L}{r_{2}^{2} + (\omega L)^{2}} - \frac{\frac{1}{\omega C}}{r_{2}^{2} + \left(\frac{1}{\omega C}\right)^{2}}\right] = g(\omega) - jb(\omega).$$
(2.18)

где $g(\omega)$ и $b(\omega)$ – активная и реактивная проводимости соответственно.

Из условия резонанса токов Im Y = 0 находим резонансную частоту ω_p :

$$b(\omega) = 0 \rightarrow \frac{1}{\omega C} = \frac{\omega L}{r_1^2 + (\omega L)^2} \rightarrow \omega_p = \frac{1}{\sqrt{LC}} \cdot \sqrt{\frac{\frac{L}{C} - r_1^2}{\frac{L}{C} - r_2^2}} = \omega_0 \sqrt{\frac{\rho^2 - r_1^2}{\rho^2 - r_2^2}}, \quad (2.19)$$

где $\omega_0 = \frac{1}{\sqrt{LC}}$ – резонансная частота для простейшего случая когда $r_1 = r_2 = 0$, $\rho = \sqrt{\frac{L}{C}}$ – характеристическое сопротивление контура. Очевидно, что резонансная частота ω_p существует тогда, когда

выполняется условие $\frac{\rho^2 - r_1^2}{\rho^2 - r_2^2} > 0$ или когда $\begin{cases} r_1 > \rho \\ r_2 > \rho \end{cases}$, либо $\begin{cases} r_1 < \rho \\ r_2 < \rho \end{cases}$. Важно отметить, что при $r_1 = r_2 \neq \rho$ резонанс токов возникает на частоте $\omega_p = \omega_0$. В том случае, когда $r_1 = r_2 = \rho$, условие резонанса Im Y = 0 (или $b(\omega) = 0$) выполняется на любой частоте, а весь участок цепи может быть заменен эквивалентным сопротивлением $Z_2 = \rho$.

Приняв в соотношении (2.19) $r_2 = 0$ получаем значение резонансной частоты для модели электрической цепи, схема которой изображена на рис. 26:

$$\tilde{\omega}_p = \omega_0 \sqrt{\frac{\rho^2 - r_1^2}{\rho^2}} = \omega_0 \sqrt{1 - \frac{r_1^2}{\rho^2}}$$

Особенности векторной диаграммы токов в режиме резонанса для цепей (рис. 25 и рис. 26) рассмотрены на конкретных примерах (см. задачи 27 и 28), что позволяет избежать громоздких выкладок, и делает рассмотрение более наглядным.

В режиме резонанса тока полная проводимость $Y_p = g(\omega_p)$ является вещественной, поэтому (как для участка цепи, изображенного на рис. 25, так и для участка на рис. 26): $\dot{I}_p = \dot{U} \cdot Y = \dot{U} \cdot g(\omega_p)$. Из полученного соотношения следует, что на резонансной частоте ω_p весь участок электрической цепи может быть заменен рези-

стивным элементом с сопротивление $r_p = \frac{1}{g(\omega_p)}$. Подставив вы-

ражение (2.19) для ω_p в соотношение (2.18) и выполнив элементарные преобразования, можно получить простую формулу для расчета значения проводимости (или сопротивления) контура в момент резонанса токов:

$$g(\omega_p) = \frac{r_1 + r_2}{r_1 r_2 + \rho^2}$$
 или $r_p = \frac{r_1 r_2 + \rho^2}{r_1 + r_2}$.
Анализ соотношения (2.18) показывает, что условие резонанса Im Y = 0 выполняется на частоте ω_p , а условие минимума |Y| достигается на частоте ω_m , причем в общем случае $\omega_p \neq \omega_m$. Поэтому амплитуда тока I имеет минимум на частоте ω_m , а нулевой фазовый сдвиг общего тока относительно приложенного напряжения имеет место на частоте ω_p . Этим рассмотренные цепи (рис. 25 и рис. 26) отличаются от простейшего параллельного контура (см. рис. 23), в котором условия Im Y = 0 и min |Y| обеспечиваются при одинаковой частоте ω_0 .

2.2.2. Энергетические соотношения при резонансе токов

Энергетические процессы при резонансе токов в простейшей цепи, схема которой изображена на рис. 22, аналогичны процессам энергообмена в цепи с последовательным соединением R - L - C элементов при резонансе напряжений.

В режиме резонанса токов для комплексных амплитуд токов индуктивного и емкостного элементов выполняется соотношение $\dot{I}_L = -\dot{I}_C$. Это означает, что синусоидальные токи $i_L(t)$ и $i_C(t)$ находятся в противофазе (сдвиг фаз составляет π). Пусть через емкостной элемент протекает синусоидальный ток: $i_C(t) =$ $= I_C \cos(\omega t + \psi)$. Тогда при резонансе токов через индуктивный элемент протекает ток: $i_L(t) = I_L \cos(\omega t + \psi - \pi) = -I_C \cos(\omega t + \psi)$. К параллельным ветвям приложено одинаковое напряжение u(t) и для мощности в индуктивном и емкостном элементах выполняется:

$$p_L + p_C = u(t) \cdot i_L(t) + u(t) \cdot i_C(t) = u(t)[i_L(t) + i_C(t)] =$$
$$= u(t)[-i_C(t) + i_C(t)] = 0.$$

Пусть приложенное напряжение u(t) задано: $u(t) = U \sin(\omega t + \psi)$. В этом случае токи через емкостной и индуктивный элементы, соответственно, можно записать так:

$$i_C(t) = I_C \sin\left(\omega t + \psi + \frac{\pi}{2}\right) = I_C \cos(\omega t + \psi),$$

$$i_L(t) = I_L \sin\left(\omega t + \psi - \frac{\pi}{2}\right) = -I_L \cos(\omega t + \psi).$$

Мгновенные значения энергии магнитного и электрического поля представим в виде (заметив, что в рассматриваемой цепи $u_C(t) = u_L(t) = u(t)$):

$$W_{L}(t) = \frac{Li_{L}^{2}}{2} = \frac{LI_{L}^{2}}{2} \cos^{2}(\omega t + \psi) =$$

$$= W_{L} \cos^{2}(\omega t + \psi) = W_{L}[1 + \cos 2(\omega t + \psi)],$$

$$W_{C}(t) = \frac{Cu_{C}^{2}}{2} = \frac{CU^{2}}{2} \sin^{2}(\omega t + \psi) =$$

$$= W_{C} \sin^{2}(\omega t + \psi) = W_{C}[1 - \cos 2(\omega t + \psi)].$$
(2.20)

Выражения, полученные для $W_L(t)$ и $W_C(t)$ показывает, что мгновенные значения энергии магнитного и электрического поля изменяются в противофазе. Из соотношения $p_L + p_C = 0$ ясно, что $p_L = -p_C$, а это означает, что

$$\frac{d}{dt}(W_L(t)) = -\frac{d}{dt}(W_C(t)). \qquad (2.21)$$

Продифференцировав правые части (2.20) и подставив результат в (2.21) получаем:

$$W_L[-\sin 2(\omega t + \varphi)] \cdot 2\omega = -W_C[\sin(2\omega t + \varphi)] \cdot 2\omega$$

После сокращения получаем: $W_L = W_C$. Подобный результат был получен для максимума энергии магнитного поля и электрического поля при рассмотрении резонанса напряжения (см. раздел 2.1.2). Сохраняют свое значение и графики на рис.15, которые иллюстрируют изменение во времени $W_L(t)$ и $W_C(t)$ (полное совпадение с представленными графиками достигается, когда начальная фаза $\psi = 0$). Справедливым остается и вывод об энергообмене в режиме резонанса между индуктивным и емкостным элементами. Таким образом, при резонансе токов переход энергии магнитного поля (из ветви с индуктивным элементом) в энергию электрического поля (в ветви с емкостным элементом) и обратно, осуществляется без энергообмена с источником (энергии), питающим цепь. При этом энергия источника питания расходуется только в резистивной ветви с проводимостью g.

2.2.3. Частотные характеристики параллельного колебательного контура

Комплексную проводимость параллельного колебательного контура (рис. 22) можно представить так:

$$Y = g - j\left(\frac{1}{\omega L} - \omega C\right) = g - j\omega_0 C\left(\frac{1}{\omega\omega_0 CL} - \frac{\omega}{\omega_0}\right) =$$
$$= g - j\omega_0 C\left[\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right] = |Y| \cdot e^{-j\varphi}.$$

Полагая, что φ – фазовый сдвиг тока (через весь участок цепи) относительно приложенного напряжения, выражение для фазочастотной характеристики можно записать в следующем виде:

$$\varphi(\omega) = \operatorname{arctg} \frac{\omega_0 C}{g} \left[\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0} \right].$$

График зависимости $\phi(\omega)$ представлен на рис. 27.

Очевидно что при резонансной частоте $\phi(\omega_0) = 0$. Для частот $\omega < \omega_0$ фазовый сдвиг тока относительно напряжения $\phi > 0$, что характерно для цепей, проводимость которых носит индуктивный характер $(b_L > b_C)$. Когда частота $\omega > \omega_0$, фазовый сдвиг $\phi < 0$, что характерно для цепей с емкостной проводимостью $(b_L < b_C)$. График зависимости от частоты реактивной проводимости $b(\omega)$ изображен на рис. 28.

Амплитуды токов в ветвях параллельного колебательного контура при неизменной амплитуде приложенного напряжения пропорциональны проводимостям ветвей: $I_g = U \cdot g$, $I_L = \frac{U}{\omega L}$, $I_C = U \cdot \omega C$. График зависимости амплитуд токов от частоты изображен на рис. 29.

На резонансной частоте ω_0 проводимость цепи наименьшая – ток так же минимален. Если поддерживать неизменной амплитуду общего тока *I*, то получим зависимости напряжения *U* (приложенного к контуру) и токов *I*_L, *I*_C, *I*_g от частоты (подобно тому, как ранее было сделано для последовательного контура при рассмотрении резонанса напряжений):

$$U(\omega) = \frac{I}{\sqrt{g^2 + \left(\frac{1}{\omega L} - \omega C\right)^2}};$$

$$I_L(\omega) = \frac{I \cdot \frac{1}{\omega L}}{\sqrt{g^2 + \left(\frac{1}{\omega L} - \omega C\right)^2}};$$

$$I_C(\omega) = \frac{I \cdot \omega C}{\sqrt{g^2 + \left(\frac{1}{\omega L} - \omega C\right)^2}}.$$

На рис. 30 изображены графики указанных зависимостей.

Кривые на графике (рис. 30) схожи с соответствующими кривыми АЧХ, которые были получены при рассмотрении резонанса напряжений и представлены на рис. 17. Подобный характер соответствующих кривых объясняется аналогией выражений, задающих при резонансах (напряжений и токов) зависимости: $I(\omega)$ и $U(\omega)$, $I_L(\omega)$ и $U_C(\omega)$, $I_C(\omega)$ и $U_L(\omega)$.

Примеры

Задача 2.5

Генератор синусоидального напряжения, амплитуда которого U = 1,4 В, подключен к участку электрической цепи (рис. 22), причем: r = 50 Ом, L = 0,25 мГн, C = 2,5 мкФ. Найти резонансную частоту ω_0 , характеристическое сопротивление ρ и амплитуды токов I_g , I_L и I_C в параллельных ветвях.

Решение:

Из условия (2.13) для резонансной частоты контура была получена формула:

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0,25 \cdot 10^{-3} \cdot 2,5 \cdot 10^{-6}}} = 4 \cdot 10^4 \text{ pag/c}.$$

Характеристическое сопротивление контура

$$\rho = \sqrt{\frac{L}{C}} = \sqrt{\frac{0,25 \cdot 10^{-3}}{2,5 \cdot 10^{-6}}} = 10$$
 OM.

На резонансной частоте амплитуды токов:

$$I_g = U \cdot \frac{1}{r} = 1, 4 \cdot \frac{1}{50} = 0,028A = 28 \text{ MA},$$

$$I_L = I_C = \frac{U}{\sqrt{\frac{L}{C}}} = 0,14A = 1,4 \cdot 10^2 \text{ MA.}$$

Следует обратить внимание, что при резонансе токов отношение амплитуды тока через индуктивный I_L (или емкостной I_C) элемент к амплитуде тока $I_g = I$ через резистивный элемент равно отношению сопротивления *r* резистивной ветви к характеристическому сопротивлению контура $\rho \frac{I_L}{I} = \frac{I_C}{I} = \frac{r}{\rho} = 5$.

Задача 2.6

К участку электрической цепи (рис. 25) подключен генератор синусоидального напряжения. Найти резонансную частоту ω_p , если: $r_1 = 8$ Ом, $r_2 = 6$ Ом, L = 0,25 мГн, C = 2,5 мкФ. Сравнить эту частоту с частотой ω_0 , найденной в предыдущей задаче.

Решение:

В вычислениях учтем, что индуктивность L и емкость C параллельных ветвей совпадают с данными из предыдущей задачи. Поэтому воспользуемся найденными значениями ω_0 и р.

В соответствии с (2.19) резонансная частота рассматриваемого участка цепи:

$$\omega_{p} = \frac{1}{\sqrt{LC}} \sqrt{\frac{\frac{L}{C} - r_{1}^{2}}{\frac{L}{C} - r_{2}^{2}}} = \omega_{0} \sqrt{\frac{\rho^{2} - r_{1}^{2}}{\rho^{2} - r_{2}^{2}}} = \omega_{0} \sqrt{\frac{100 - 64}{100 - 36}} = \frac{3}{4} \omega_{0} = \frac{3}{4} \cdot 4 \cdot 10^{4} \text{ pag/c} = 3 \cdot 10^{4} \text{ pag/c}.$$

Следует обратить внимание, что $\omega_p = \frac{3}{4}\omega_0 < \omega_0$. Это очевидный результат, когда $r_2 < r_1 < \rho$. Для случая, когда $r_1 < r_2 < \rho$ оказалось бы, что $\omega_p > \omega_0$.

Задача 2.7

Для цепи рассмотренной в задаче 2.6, в режиме резонанса токов найти проводимости ветвей $Y_1 = g_1 - jb_1$ и $Y_2 = g_2 + jb_2$. Построить векторные диаграммы токов для случая, когда приложенное напряжение $u(t) = 1,4\sin(\omega_p t)$ [B].

Решение:

В соответствии с (2.18) находим проводимости ветви при резонансной частоте ω_n :

$$Y_{1} = g_{1} - jb_{1} = \frac{r_{1}}{r_{1}^{2} + (\omega_{p}L)^{2}} - j\frac{\omega_{p}L}{r_{1}^{2} + (\omega_{p}L)^{2}} = \frac{32}{481} - j\frac{30}{481},$$

$$Y_{2} = g_{2} + jb_{2} = \frac{r_{2}}{r_{2}^{2} + \left(\frac{1}{\omega_{p}C}\right)^{2}} + j\frac{\frac{1}{\omega_{p}C}}{r_{2}^{2} + \left(\frac{1}{\omega_{p}C}\right)^{2}} = \frac{27}{962} + j\frac{30}{481}.$$

В режиме резонанса токов проводимость всего участка вещественна:

$$Y = Y_1 + Y_2 = g_1 + g_2 = \frac{91}{962} = \frac{7}{74} [Om^{-1}].$$

Поэтому общий ток, протекающий через участок, синфазен (не имеет фазового сдвига) приложенному напряжению *u*. Это означает, что на векторной диаграмме комплексным амплитудам тока \dot{I} и напряжения \dot{U} соответствуют вектора, направленные вдоль одной прямой. Поскольку заданному напряжению u(t) соответствует $\dot{U} = 1, 4 \cdot e^{j0} = 1, 4$, находим для тока: $\dot{I} = \dot{U} \cdot Y = 1, 4\frac{7}{74} \approx 132$ мА.

При нахождении комплексных амплитуд токов в первой и второй параллельных ветвях подсчитаем их вещественные и мнимые составляющие:

$$\dot{I}_1 = \dot{U} \cdot Y_1 = 1, 4 \left(\frac{32}{481} - j \frac{30}{481} \right) \approx 93 - j87, 3 \text{ MA},$$

$$\dot{I}_2 = \dot{U} \cdot Y_2 = 1, 4 \left(\frac{27}{962} + j \frac{30}{962} \right) \approx 39 + j87, 3 \text{ MA}$$

На рис. 31 изображена векторная диаграмма токов, причем векторы \dot{I}_1 и \dot{I}_2 представлены как суммы составляющих по вещественной и мнимой оси: $\dot{I}_1 = \dot{I}_{1A} + \dot{I}_{1p}$, $\dot{I}_2 = \dot{I}_{2A} + \dot{I}_{2p}$. Составляющие $\dot{I}_{14} = 93 \text{ MA}, \quad \dot{I}_{24} = 39 \text{ MA}$ называют активными со- \dot{I}_2 \dot{I}_{2p} ставляющими. Составляющие $\dot{I}_{1n} = -j87,3$ мА и $\dot{I}_{2n} = j87,3$ мА называ- \dot{I}_{2A} ют реактивными составляющими. Векторная диа- \dot{I}_{1A} грамма наглядно показывает, что в режиме резонанса токов имеют место составравенства (для

ляющих токов
$$\dot{I}_1$$
 и \dot{I}_2):
 $\dot{I}_{1p} = -\dot{I}_{2p}$,

$$\dot{I}_{1A} + \dot{I}_{2A} = \dot{I}$$

Задача 2.8

Участок цепи (рис.26) работает в режиме резонанса токов. Известны амплитуда тока в емкостной ветви $I_2 = 12$ мА и амплитуда общего тока I = 5 мА. Определить амплитуду тока в индуктивной ветви I_1 .

Решение:

Пусть к участку приложено напряжение $u(t) = U \sin(\omega_n t)$, которому соответствует комплексная амплитуда $\dot{U} = U \cdot e^{j0}$. Тогда току I_2 соответствует комплексная амплитуда: $\dot{I}_2 = \dot{U} \cdot j\omega_p C = U\omega_p C \cdot e^{j\frac{\pi}{2}}$.

В режиме резонанса токов (как следует из (2.18)) проводимость всего участка вещественна:

$$Y = Y_{1} + Y_{2} = \frac{r}{r^{2} + (\omega_{p}L)^{2}} - j\left(\frac{\omega_{p}L}{r^{2} + (\omega_{p}L)^{2}} - \omega_{p}C\right) = \frac{r}{r^{2} + (\omega_{p}L)^{2}} = g(\omega_{p}).$$

Поэтому: $\dot{I} = \dot{U} \cdot Y = \dot{U} \cdot g(\omega_p)$. Таким образом, вектор \dot{I} сонаправлен с вектором \dot{U} , а вектор \dot{I}_2 составляет с вектором \dot{U} прямой угол. Построим векторную диаграмму, выбрав для вектора \dot{U} направление, совпадающее с вещественной осью, как указано на рис. 32, отложив в указанных направлениях вектора, длины которых $|\dot{I}| = I$ и $|\dot{I}_2| = I_2$ заданы в условии задачи.

Для определения положения вектора \dot{I}_1 воспользуемся первым законом Кирхгофа: $\dot{I} = \dot{I}_1 + \dot{I}_2$ (расположение вектора \dot{I}_1 теперь очевидно: достаточно вспомнить правило сложения векторов) или $\dot{I}_1 = \dot{I} - \dot{I}_2$. Из прямоугольного треугольника находим амплитуду тока в индуктивной ветви:

$$I_1 = |\dot{I}_1| = \sqrt{|\dot{I}|^2 + |\dot{I}_1|^2} = \sqrt{5^2 + 12^2} = 13 \text{ mA}.$$

3.1. Законы коммутации

В электрических цепях, которые рассматривались в предыдущих разделах, процессы энергообмена носили установившейся характер, параметры элементов цепи и схема их соединений сохранялись постоянными. На практике во многих электрических цепях происходит подключение или отключение некоторых участков (ветвей) цепи, а параметры элементов цепи могут резко измениться в результате воздействия (управляемого или несанкционированного).

Для моделирования указанных изменений вводится идеализированный элемент – ключ (рис. 33), который в разомкнутом состоянии образует разрыв, а в замкнутом состоянии является идеальным проводником (закороткой). Из разомкнутого состояния в замкнутое (или обратно) идеальный ключ переключается мгновенно. На схемах такой ключ изображается в разомкнутом состоянии, а стрелка рядом с ключом указывает, в какое состояние переходит ключ: стрелка в сторону ветви – ранее разомкнутый ключ замыкается (рис. 33,*a*), стрелка направленная от ветви, означает, что ключ (ранее замыкавший ветвь) размыкается (рис. 33,*б*).

В качестве примера на рис. 34 изображена схема цепи, в которой происходит подключение ветви. На рис. 35 показано, как с помощью ключа моделируется скачкообразное изменение емкости *Саб* на участке цепи.

Первоначально ключ замкнут (и элемент C_2 закорочен), поэтому $Ca\delta = C_1$. После размыкания ключа $Ca\delta = \frac{C_1 \cdot C_2}{C_1 + C_2}$.

Мгновенное (резкое) переключение, связанное с подключением и/или отключением участков электрической цепи, получило название коммутации. Обычно полагают, что коммутация осуществляется в момент времени $t_K = 0$. Из определения понятно, что продолжительность коммутации $\Delta t_K = 0$. Считается, что до наступления момента времени $t_K = 0$, т.е. при t < 0, цепь работает в установившемся режиме: схема и параметры элементов постоянны, реакции цепи (токи и напряжения) изменяются (или же не изменяются) в соответствии со стабильными воздействиями, сформированными источниками тока и ЭДС (постоянными, синусоидальными и т.д.). В момент коммутации к электрической цепи подключаются (либо отключаются) ветви (ветвь) с элементами, которые не принимали участия (либо перестают участвовать) в ранее существовавшем в цепи распределении энергии (энергообмене).

Новые подключенные элементы «открывают новые пути» для протекания токов, потребляют энергию, могут накапливать энергию или отдавать (запасенную в них) энергию в цепь. При отключении же элементов разрываются существовавшие пути протекания тока, нарушается ранее сложившееся распределение потоков энергии в ветвях. Однако это перераспределение наступает не мгновенно. Действительно, установившемуся режиму, существовавшему в цепи, соответствует определенное значение энергии, запасенной в электрическом и магнитном поле, т.е. в емкостных и индуктивных элементах. Если допустить, что в момент коммутации возможен скачкообразный переход от одного установившегося режима к другому (при котором энергия в емкостных и индуктивных элементах распределена иначе), то неизбежно возникновение скачка энергии, которая запасена в реактивных элементах. В этом слу-

чае мощность, связанная с энергией соотношением $p = \frac{dW}{dt}$ при-

нимала бы бесконечно большие значения. Такие значения мощности могли бы обеспечить источники энергии, которые создают бесконечно большие токи и/или напряжения. Однако в реальных электрических цепях (и в моделях таких цепей) существуют источники энергии, способные формировать токи, напряжения и мощности, значения которых конечны.

Таким образом, энергия, запасенная в емкостных и индуктивных элементах, не может измениться скачком, а изменяется непрерывно (и плавно). Поэтому значения энергии в реактивных элементах в последнее мгновения перед коммутацией, т.е. в момент времени t = 0 – совпадает со значением энергии в первое мгновения после коммутации, т.е. в момент времени t = 0 + :

$$\begin{split} W_C(0-) &= W_C(0+) \quad \to \quad \frac{CU^2(0-)}{2} = \frac{CU^2(0+)}{2}, \\ W_L(0-) &= W_L(0+) \quad \to \quad \frac{Li^2(0-)}{2} = \frac{Li^2(0+)}{2}. \end{split}$$

Из полученных соотношений следуют законы (правила) коммутации:

1. Ток через индуктивный элемент в начальный момент времени после коммутации сохраняет такое же значение, как и непосредственно перед коммутацией:

$$i_L(0+) = i_L(0-)$$
.

2. Напряжение на емкостном элементе в начальный момент времени после коммутации сохраняет такое же значение, как и непосредственно перед коммутацией:

$$u_C(0+) = u_C(0-)$$
.

Законы коммутации не накладывают ограничений на характер изменения остальных реакций: токов через емкостные и резистивные элементы, а также токов через источник ЭДС; напряжений на индуктивных и резистивных элементах, а также напряжений на источниках тока. При коммутации эти реакции могут изменяться резко, скачкообразно.

Процесс в цепи, обусловленный коммутацией и состоящий в переходе цепи от одного установившегося состояния (с присущем ему энергорасспределением) к другому установившемуся состоянию (с присущем новому состоянию энергорасспределением), называют переходным процессом.

Для нахождения неизвестных токов и напряжений на элементах цепи в течение переходного процесса необходимо составить систему уравнений относительно мгновенных значений токов i(t) и напряжений u(t). Эта система уравнений записывается для схемы цепи, которая образовалась после коммутации, а поэтому имеет смысл при $t \ge 0+$ (поскольку при t < 0 схема цепи была иной). Система уравнений может быть получена на основании законов Кирхгофа или с использованием известных методов расчета (например, метода контурных токов и др.).

В общем случае система уравнений для анализа переходных процессов является интегро-дифференциальной в силу характера соотношений, связывающих ток и напряжение на индуктивных и емкостных элементах:

$$u_{L} = L \frac{di_{L}}{dt} \quad \text{или} \quad i_{L} = \frac{1}{L} \int_{0}^{t} u_{L} dt + i_{L}(0),$$

$$i_{C} = C \frac{du_{C}}{dt} \quad \text{или} \quad u_{C} = \frac{1}{C} \int_{0}^{t} i_{C} dt + u_{C}(0).$$
(3.1)

3.2. Классический метод анализа переходных процессов

Этот метод основан на классическом алгоритме решения обыкновенных дифференциальных уравнений. Именно такого типа уравнение относительно неизвестного тока (или напряжения) можно получить, продифференцировав необходимое число раз и проведя исключение остальных переменных (кроме искомого тока (напряжения)) в системе уравнений, сформированной для расчета переходных процессов. В общем случае уравнение будет иметь вид (линейного неоднородного дифференциального уравнения ЛНДУ):

$$\alpha_n \frac{d^n x}{dt^n} + \alpha_{n-1} \frac{d^{n-1} x}{dt_{n-1}} + \dots + \alpha_2 \frac{d^2 x}{dt^2} + \alpha_1 \frac{dx}{dt} + \alpha_0 x = f(t) .$$

Известно, что общее решение (ОР ЛНДУ) такого уравнения можно представить в виде суммы общего решения линейного однородного дифференциального уравнения (ОР ЛОДУ) (левая часть этого уравнения совпадает с левой частью записанного уравнения, а правая часть равна нулю) и частного решения неоднородного уравнения (ЧР ЛНДУ):

$$x_{\text{OP ЛНДУ}} = x_{\text{OP ЛОДУ}} + x_{\text{ЧР ЛНДУ}}. \qquad (3.2)$$

Для определения решения *х*_{*OP ЛОДУ*} необходимо найти корни характеристического многочлена:

$$\alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0 = 0.$$
 (3.3)

Зная корни характеристического многочлена, можно записать решение *х*_{ОР ЛОДУ}. Для случая, когда корни характеристического многочлена некратные (т.е. различные):

$$x_{\text{OP JOДY}} = A_1 \cdot e^{\lambda_1 t} + A_2 \cdot e^{\lambda_2 t} + \dots A_n \cdot e^{\lambda_n t} = \sum_{k=1}^n A_k \cdot e^{\lambda_k t} ,$$

каждому простому корню λ_k соответствует слагаемое $A_k \cdot e^{\lambda_k t}$, где A_k – постоянная интегрирования, которая определяется из начальных условий.

В реальных электрических цепях не могут возникать бесконечно большие токи и/или напряжения. Поэтому вещественные корни λ_k характеристического многочлена должны быть отрицательны¹, а

¹ Иначе слагаемые вида $A_k \cdot e^{\lambda_k t}$ при $t \to +\infty$ принимают бесконечно большие значения, что неизбежно приводит к бесконечно большим токам и напряжениям.

комплексные корни $\lambda = \alpha + j\beta$ должны иметь отрицательную действительную часть.

В качестве частного решения $x_{\rm ЧР ЛНДУ}$ наиболее удобно выбрать такое решение, которое соответствует времени $t \rightarrow +\infty$. Действительно, к выбранному моменту времени переходной процесс закончится и цепь перейдет в новый установившейся режим. В этом режиме реакции цепи, в том числе и реакция $x_{\rm ЧР ЛНДУ}$, будет определяться характером существующих воздействий, которые задаются источником (токов и ЭДС), имеющимися в цепи. Источники (токов и ЭДС), которые формируют постоянные или синусоидальные воздействия, порождают, соответственно, постоянные или синусоидальные реакции (токи и напряжения). Для нахождения токов и напряжений в цепях постоянного или переменного синусоидального тока не потребуется решать дифференциальное уравнение, так как оно вырождается и переходит в алгебраическое уравнение. Это обстоятельство побуждает выбирать частное решение $x_{\rm ЧР ЛНЛУ}$ при $t \rightarrow +\infty$.

Рассмотрим применение классического метода анализа переходных процессов для расчета тока i(t) в цепи, схема которой изображена на рис. 36.

Рис. 36

В этой цепи источник ЭДС подключается к нагрузке в виде последовательно соединенных резистивного, индуктивного и емкостного элементов (будем считать, что напряжение на емкостном элементе до коммутации $u_C(0-)=0$). После замыкания ключа, в соответствии со вторым законом Кирхгофа:

$$u_R + u_L + u_C = e(t) \, .$$

Выразив напряжение u_R , u_L и u_C через ток *i* (используя закон Ома и соотношения (3.1)), получим:

$$R \cdot i + L \frac{di}{dt} + \frac{1}{C} \int_{0}^{t} i dt = e(t) .$$
 (3.4)

Это уравнение справедливо при любом $t \ge 0+$. Обозначим ток, который установится в контуре при $t \to +\infty$, т.е. после окончания переходного процесса i_{yct} . Формально этот ток можно найти из уравнения (3.4) в соответствии с (3.2). Но после окончания переходного процесса само уравнение при постоянной или синусоидальной ЭДС e(t) "потеряет" интегро-дифференциальный характер и станет алгебраическим, что позволит более просто найти ток i_{yct} . Если ток i_{yct} найден, то уравнение (3.4) обращается в верное равенство:

$$R \cdot i_{\rm yct} + L \frac{di_{\rm CB}}{dt} + \frac{1}{C} \int_{0}^{t} i_{\rm CB} dt \equiv e(t) .$$

Вычтем из уравнения (3.4) полученное уравнение:

$$R(i-i_{y_{CT}}) + L\frac{d(i-i_{y_{CT}})}{dt} + \frac{1}{C}\int_{0}^{t} (i-i_{y_{CT}})dt = 0.$$

Обозначим разность $(i - i_{yct}) = i_{cB}$. Так называемый ток свободной составляющей i_{cB} можно рассматривать как ток, существующий в цепи только во время переходного процесса, поскольку из тока *i* "удалена" составляющая i_{yct} , характеризующая ток в установившемся режиме. Для свободной составляющей i_{cB} получено уравнение:

$$R \cdot i_{\rm CB} + L \frac{di_{\rm CB}}{dt} + \frac{1}{C} \int_{0}^{t} i_{\rm CB} dt = 0,$$

которое после дифференцирования дает однородное дифференциальное уравнение:

$$\frac{d^2 i_{\rm \tiny CB}}{dt^2} + \frac{R}{L} \cdot \frac{d i_{\rm \tiny CB}}{dt} + \frac{1}{LC} i_{\rm \tiny CB} = 0 \; . \label{eq:cb}$$

Находим корни характеристического уравнения:

$$\lambda^2 + \frac{R}{L}\lambda + \frac{1}{LC} = 0,$$
$$\lambda_{1,2} = -\frac{R}{2L} \pm \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}}.$$

Если корни λ_1 и λ_2 различны, то:

$$i_{\rm cb} = A_1 \cdot \mathrm{e}^{\lambda_1 t} + A_2 \cdot \mathrm{e}^{\lambda_2 t} \,,$$

где A_1 и A_2 – постоянные, которые определяются из начальных условий.

Теперь искомый ток можно представить в виде:

$$i(t) = A_1 \cdot e^{\lambda_1 t} + A_2 \cdot e^{\lambda_2 t} + i_{\text{yct}}.$$

Для нахождения составляющей i_{ycr} достаточно провести расчет цепи (рис. 37) в установившемся режиме.

Рис. 37

После окончания переходного процесса $i(t) = i_{ver}$ (так как $i_{c_{R}}(t) = 0$ при $t \to +\infty$) и эта реакция определяется характером ЭДС e(t). Если ЭДС постоянна, то и ток i_{vcr} должен быть постоянным. Известно, что постоянный ток не может протекать через емкостной элемент. Поэтому при e(t) = E = const, ток $i_{\text{vcr}} = 0$ (нулевой ток – частный случай постоянного тока). Если ЭДС синусоидальная $e(t) = E \cdot \sin \omega t$, то и ток i_{ver} будет синусоидальным:

$$\dot{I}_{ycr} = \frac{\dot{E}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} e^{-j \arctan \phi},$$
$$i(t) = \frac{E}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \sin(\omega t - \phi),$$
$$= \arctan \frac{\left(\omega L - \frac{1}{\omega C}\right)}{R}.$$

где ф=

Подведем промежуточные итоги, которые следуют из применения классического метода (к расчету переходного процесса в рассмотренном примере в равной степени, как и к множеству других задач).

1. Свободную составляющую искомой реакции (*i*_{св}) определяют корни характеристического многочлена, а постоянные интегрирования в свободной составляющей могут быть определены из начальных условий (см. раздел «Виды начальных условий и определение порядка цепи»). Поэтому для нахождения реакции *i*(*t*) (или других токов и/или напряжений) нет необходимости формировать систему интегро-дифференциальных уравнений и получать из нее линейное неоднородное дифференциальное уравнение относительно искомой реакции.

2. Установившаяся составляющая реакции (iver) определяется после окончания переходного процесса, когда цепь работает в новом установившемся режиме. Если источники ЭДС и тока формируют в этом режиме постоянные или синусоидальные воздействия, то для нахождения установившейся составляющей не требуется искать частное решение неоднородного дифференциального уравнения, так как при указанном характере воздействий оно заменяется алгебраическим.

3.3. Виды начальных условий и определение порядка цепи

Число постоянных интегрирования в выражении, задающем вид искомой реакции (тока или напряжения), совпадает с порядком характеристического многочлена (соответствующего линейного однородного дифференциального уравнения). Эти постоянные интегрирования необходимо найти из начальных условий – значений токов и напряжений в момент коммутации, вернее в начальный момент после коммутации т.е. при t = 0 + . Из всех токов и напряжений, существовавших в цепи к моменту коммутации (т.е. при t = 0 - 1, лишь для токов через индуктивные элементы и для напряжений на емкостных элементах можно (на основании законов коммутации) непосредственно указать значения токов и напряжений в коммутации начальный t = 0 +): момент после (т.е. при $u_C(0+) = u_C(0-)$ и $i_L(0+) = i_L(0-)$. Совокупность значений токов i_L и напряжений u_{C} в момент времени (t = 0 +) после коммутации называют независимыми начальными условиями, поскольку они определяются энергетическим состоянием цепи только в момент времени, непосредственно предшествующий коммутации и не зависят от характера процессов, имевших место в цепи до коммутации (при t < 0), и от значений токов и напряжений на других элементах в момент коммутации.

Независимые начальные условия подразделяют на нулевые начальные условия, которые реализуются в цепи, если запасенная в цепи энергия в момент времени, непосредственно предшествующем коммутации, равна нулю, и ненулевые начальные условия, которые возникают в цепи, если в момент времени t = 0, запасенная энергия в цепи отлична от нуля. В первом случае все независимые начальные условия равны нулю:

$$\begin{cases} W_L(0-) = 0 \\ W_C(0-) = 0 \end{cases} \xrightarrow{i_L(0-) = 0 = i_L(0+);} u_C(0-) = 0 = u_C(0+). \end{cases}$$

Во втором случае хотя бы одно из независимых начальных условий отлично от нуля: $i_L(0+) \neq 0$ и/или $u_C(0+) \neq 0$.

После того, как с помощью законов коммутации определены независимые начальные условия, могут быть найдены начальные значения токов и напряжений на остальных элементах. Эти начальные значения называют зависимыми начальными условиями (поскольку для их определения требуется предварительно найти независимые начальные условия, и с помощью различных электротехнических методов (уравнений и соотношений) выразить зависимые начальные условия через независимые начальные условия и известные значения токов источников токов и напряжений на источниках ЭДС).

Примеры

Задача 3.1

В цепи, схема которой изображена на рис. 38, определить значение тока $i_L(0+)$ через индуктивный элемент и напряжения $u_L(0+)$ на этом элементе в момент коммутации.

Решение:

Поскольку до замыкания ключа ток в цепи не протекает, очевидно,

что $i_L(0-) = 0$. В момент коммутации в соответствии с законом коммутации для тока через индуктивный элемент выполняется соотношение:

$$i_L(0+) = i_L(0-) = 0$$
.

Изобразим схему цепи в начальный момент времени t=0+ после коммутации. На схеме (рис. 39) вместо индуктивного элемента указан разрыв ветви, поскольку только разрыв гарантирует отсутствие

тока между узлами, с которыми соединен индуктивный элемент, и обеспечивает выполнение условия $i_L(0+)=0$.

Таким образом, индуктивный элемент, через который не протекал ток в момент предшествующий коммутации, эквивалентен разрыву в начальный момент после коммутации¹.

Для нахождения напряжения $u_L(0+)$ воспользуемся вторым законом Кирхгофа (обход контура указан на рис. 39 пунктиром):

$$u_1(0+) + u_2(0+) + u_L(0+) = E$$
или
$$i_1(0+) \cdot r_1 + i_2(0+) \cdot r_2 + u_L(0+) = E$$

Ток в контуре (с разрывом) не протекает, очевидно, для элементов r_1 , r_2 и L, соединенных последовательно $i_1(0+) = i_2(0+) = i_L(0+) = 0$. Поэтому получаем:

$$0 + 0 + u_L(0+) = E$$
.

В отличие от тока через индуктивный элемент напряжение $u_L(0+)$ в момент коммутации изменилось скачком (от значения 0 при $t \le 0 - до$ значения *E* в момент t = 0+).

В цепи, схема которой изображена на рис. 40, найти значения токов $i_L(0+)$ и $u_r(0+)$ в момент коммутации. Считать, что $R_1 = R_2 = 2r$.

¹ Это правило выполняется в течение одного мгновения, но этого достаточно для определения начальных условий

Решение:

До коммутации ключ был замкнут и для всех моментов времени $t \le 0$ – реакции в цепи порождались постоянным воздействием – источником ЭДС, а потому эти реакции были постоянными. Для постоянного тока индуктивный элемент является "закороткой" (так как не оказывает сопротивления постоянному току), что учтено в схеме цепи до коммутации (рис. 41).

Поскольку
$$R_1 = R_2$$
, то $I_1 = I_2 = \frac{1}{2}I_r$, причем:
$$I_r = \frac{E}{r+R_1 || R_2} = \frac{E}{r+r} = \frac{E}{2r}.$$

Ток через индуктивный элемент в момент времени t=0+ согласно закону коммутации равен:

$$i_L(0+) = i_L(0-) = I_2 = \frac{1}{2}I_r = \frac{E}{4r}$$

В схеме цепи (рис. 42) в начальный момент времени (t=0+) после коммутации учтено, что лишь источник тока $J_{L0} = \frac{E}{4r}$ гарантирует протекание в ветви, содержащей индуктивный элемент, тока $i_L(0+)$.

Таким образом, индуктивный элемент, через который протекает ток в момент предшествующий коммутации, эквивалентен источнику тока в начальный момент после коммутации. После размыкания ключа цепь состоит из одного контура, поэтому ток $i_r(0+)$ в момент t = 0+ должен совпадать с током J_{L0} источника тока:

$$i_r(0+) = J_{L0} = i_L(0+) = \frac{E}{4r}$$

В отличие от тока через индуктивный элемент ток i_r в момент коммутации изменяется скачком от значения $i_r(0-) = \frac{E}{2r}$ до значе-

ния
$$i_r(0+) = \frac{E}{4r}$$
.

Рис. 43

В цепи, схема которой изображена на рис. 43, найти значения напряжения $u_C(0+)$ на емкостном элементе и тока $i_r(0+)$ в момент коммутации.

Решение:

До замыкания ключа напряжение на емкостном элементе равно нулю¹ и в соответствии с законом коммутации:

$$u_C(0+) = u_C(0-) = 0$$
.

На рис. 44 изображена схема цепи в начальный момент (*t* = 0+) после коммутации.

¹ Действительно, если предположить, что напряжение на емкостном элементе в некоторый момент времени (t < 0) было отлично от нуля, то к моменту коммутации (t = 0) емкостной элемент разрядится через резистивный элемент R.

Поскольку $u_C(0+) = 0$, узлы, между которыми подключен емкостной элемент, соединены "закороткой", гарантирующей нулевую разность потенциалов между этими узлами.

Таким образом, емкостной элемент, напряжение на котором в момент, предшествующий коммутации, равно нулю, эквивалентен закороченной ветви.

В момент t = 0+ ток $i_r(0+)$ протекает так, как указано пунктиром на рис. 44, и его значение:

$$i_r(0+) = \frac{E}{r} \, .$$

Очевидно, что этот ток при коммутации изменился скачком, т.к. до замыкания ключа $i_r (t \le 0-) = 0$.

Задача 3.4

В цепи, схема которой изображена на рис. 45, найти значения напряжения $u_C(0+)$ на емкостном элементе. Сравнить значения тока i_r до и после размыкания ключа

Решение:

До размыкания ключа имеем цепь постоянного тока: воздействие источника постоянной ЭДС порождает в цепи только постоянные токи и напряжения на ее элементах. Постоянный ток через емкостной элемент не протекает $I_C = 0$. Ток протекает лишь по внешнему контуру (по ветвям с элементами E - r - R - E):

$$I = \frac{E}{r+R}$$

В результате напряжение на резистивном элементе *R* составляет:

$$U_R = I \cdot R = \frac{E \cdot R}{r + R}.$$

Таким же до коммутации будет напряжение на емкостном элементе (соединенном параллельно с R):

$$u_C(t \le 0-) = U_R = \frac{E \cdot R}{r+R}$$

По закону коммутации для напряжения на емкостном элементе:

$$u_C(0+) = u_C(0-) = \frac{E \cdot R}{r+R}.$$
(3.5)

На рис. 46 изображена схема цепи в начальный момент (t = 0+) после коммутации.

В этот момент между узлами, с которыми соединен емкостной элемент, должно быть напряжение $u_C(0+) = u_C(0-)$. Заданное напряжение обеспечивает при t = 0+ источник

ЭДС $E_{C0} = \frac{E \cdot R}{r+R}$. Заметим, что «стрелка» источника направлена

противоположно «стрелке» напряжения¹.

Таким образом, емкостной элемент, напряжение на котором в момент, предшествующий коммутации, отлично от нуля, эквивалентен источнику ЭДС.

Через резистивный элемент *r* до размыкания ключа протекал ток:

$$i_r (t \le 0-) = I = \frac{E}{r+R}.$$

После коммутации ток через этот элемент не протекает $i_r (t \ge 0+) = 0$. Значит, в момент коммутации ток i_r изменился скачком (в отличие от напряжения u_C).

¹ «Стрелка» источника ЭДС направлена в сторону узла с более высоким потенциалом, а стрелка напряжения (выбранная в условии) направлена в сторону убывания потенциала.

Таким образом, рассмотренные примеры продемонстрировали следующее:

1. Независимые начальные условия определяются непосредственно из законов коммутации путем нахождения значений $i_L(0-)$ и $u_C(0-)$ в момент времени предшествующий коммутации.

2. Зависимые начальные условия находятся после определения независимых начальных условий. Для нахождения зависимых начальных условий удобно использовать схему цепи в момент коммутации t = 0 + при этом:

• индуктивный элемент, через который в момент времени t = 0 – протекал ток $i_L(0-)$, следует заменить на эквивалентный источник тока $J_{L0} = i_L(0+) = i_L(0-)$, а индуктивный элемент, ток через который в момент времени t = 0 – равен нулю, заменить на разрыв;

• емкостной элемент, напряжение на котором в момент времени $t = 0_{-}$ равно $u_{C}(0_{-})$, следует заменить на эквивалентный источник ЭДС $E_{C0} = u_{C}(0_{+}) = u_{C}(0_{-})$; а емкостной элемент, напряжение на котором отсутствует при t = 0 -, заменить на закоротку;

• указанные операции позволяют найти зависимые начальные условия, применив законы Кирхгофа и/или другие известные методы для расчета цепи, модель которой получена для момента коммутации t = 0 + .

Пусть цепь после коммутации содержит n_L индуктивных элементов и n_C емкостных элементов. Тогда в систему уравнений для расчета переходных процессов входят (n_L+n_C) дифференциальных соотношений вида:

$$u_L - L \frac{di_L}{dt} = 0$$
 и/или $i_C - C \frac{du_C}{dt} = 0$.

Преобразовывая систему уравнений в дифференциальное уравнение относительно одной из реакций, получим дифференциальное уравнение, порядок которого равен $(n_L + n_C)$.

В решении дифференциального уравнения будет содержаться $(n_L + n_C)$ постоянных интегрирования, значения которых определяются из $(n_L + n_C)$ независимых условий.

Под порядком электрической цепи понимают порядок дифференциального уравнения, которое позволяет определить реакции во время переходного процесса. Этот порядок связан с числом индуктивных n_L и емкостных n_C элементов в цепи.

В некоторых случаях порядок цепи и число независимых начальных условий оказывается меньше значения $(n_L + n_C)$. На рис. 47 и рис. 48 изображены схемы участков цепей, содержащих так называемые индуктивные звезды (или сечения); образованные элементами L_1 , L_2 и L_3 и емкостные контуры, образованные элементами C_1 , C_2 и C_3 .

Рис. 48

Для токов через индуктивные элементы, которые имеют общий узел, выполняется первый закон Кирхгофа:

$$i_1 + i_2 + i_3 = 0$$
 или $i_3 = -i_1 - i_2$.

Ток i_3 (линейно) зависит от токов i_1 и i_2 , в начальный момент ток через индуктивный элемент L_3 имеет вид:

$$i_3(0+) = -i_1(0+) - i_2(0+)$$
.

Поэтому начальное условие для тока i_3 нельзя считать независимым. В общем случае, когда цепь содержит несколько, например n_3 , индуктивных звезд (или сечений), число независимых начальных условий для токов через индуктивные элементы составляет $n_L - n_3$.

Для напряжений на емкостных элементах, образующих контур, выполняется второй закон Кирхгофа: $u_1 - u_2 - u_3 = 0$ или $u_1 = u_2 + u_3$. Поскольку напряжение u_1 (линейно) зависит от напряжений u_2 и u_3 , в начальный момент напряжение на емкостном элементе C_1 имеет вид: $u_1(0+) = u_2(0+) + u_3(0+)$. Значит, это начальное условие не может считаться независимым. Если цепь содержит n_k емкостных контуров, то число независимых начальных условий для напряжений на емкостных элементах составляет $n_C - n_k$.

В самом общем случае, когда цепь содержит как индуктивные звезды (сечения), так и емкостные контуры, порядок цепи совпадает с числом независимых начальных условий и составляет: $(n_L + n_C) - (n_3 + n_k)$.

3.4. Характеристическое уравнение цепи (анализ модели цепи в свободном режиме)

Для того, чтобы определить свободную составляющую реакции, т.е. получить общее решение однородного дифференциального уравнения, необходимо найти в соответствии с (3.3) корни характеристического многочлена, который обозначим: $P_n(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + ... + \alpha_2 \lambda^2 + \alpha_1 \lambda^1 + \alpha_0$. В тех редких случаях, когда можно, минуя цепочку предварительных преобразований, непосредственно записать дифференциальное уравнение относительно искомой реакции, корни характеристического многочлена получают из уравнения: $P_n(\lambda) = 0$, которое называют характеристическим уравнением цепи. В общем случае для получения дифференциального уравнения относительно искомой реакции требуются преобразования в системе интегро-дифференциальных уравнений (о которых упоминалось в разделе «Классический метод анализа переходных процессов»). Это означает, что характеристическое уравнение может быть получено только после совершения двух предварительных операций:

1) формирования системы уравнений для расчета переходных процессов;

2) преобразования системы уравнений в уравнение относительно искомой реакции.

Указанные операции могут оказаться достаточно трудоемкими (и по сути малопродуктивными и малоинформативными для целей анализа переходных процессов). Поэтому рассмотрим иной способ получения характеристического уравнения.

Любой корень λ характеристического многочлена обращает характеристическое уравнение $P_n(\lambda) = 0$ в верное равенство. Пусть этому корню соответствует слагаемое $A \cdot e^{\lambda t}$, входящее в свободную составляющую некоторой реакции. Тогда для слагаемого $A \cdot e^{\lambda t}$ в верное равенство должно превращаться однородное дифференциальное уравнение, полученное для этой реакции. Поскольку корни характеристического многочлена являются общими для всех свободных реакций, то при корне λ в каждой из свободных составляющих имеется слагаемое $A_k \cdot e^{\lambda t}$ (где: k = 1, ..., N - числореакций). Это означает, что система интегро-дифференциальных уравнений, обращается в систему верных равенств при подстановке слагаемых $A_k \cdot e^{\lambda t}$ (вместо соответствующих реакций). Система уравнений, соответствующая однородным уравнениям, может быть получена заменой воздействий, которые содержатся в правых частях уравнений системы, на нули. Действительно, именно из системы уравнений с правой частью равной нулю можно получить однородное дифференциальное уравнение для каждой из реакций.

Системе уравнений с правой частью, равной нулю соответствует модель электрической цепи, в которой источники ЭДС формируют ЭДС е (t) = 0, а источники тока задают нулевые токи J(t) = 0. Очевидно, что такие источники ЭДС эквивалентны закороченному участку, а источники тока – разрыву ветви (рис. 49).

Рассмотрим какова связь между током и напряжением в свободном режи-

ме на емкостном и индуктивном элементах. Пусть свободная составляющая тока через элемент $i_{cb} = A \cdot e^{\lambda t}$, тогда для емкостного элемента:

$$u_{C_{\rm CB}} = \frac{1}{C} \int i_{\rm CB} dt = \frac{1}{\lambda C} A e^{\lambda t} = \frac{1}{\lambda C} i_{\rm CB},$$

для индуктивного элемента:

$$u_{L_{\rm CB}} = L \frac{di_{\rm CB}}{dt} = \lambda L \cdot A \cdot e^{\lambda t} = \lambda L i_{\rm CB} \,.$$

Полученные соотношения означают, что в свободном режиме емкостной и индуктивный элемент могут быть заменены элементами, «сопротивление» которых соответственно $\frac{1}{\lambda C}$ и λL^{1} . Для резистивного элемента связь между свободными составляющими тока и напряжения обусловлена законом Ома: $u_{R_{cm}} = R \cdot i_{cm}$.

противлением *ј* ωL .

¹ Подобная ситуация уже встречалась при рассмотрении метода комплексных амплитуд, в котором емкостной и индуктивный элементы в цепях синусоидального тока характеризовались, соответственно, комплексным емкостным сопротивлением $\frac{1}{j\omega C}$ и комплексным индуктивным со-

Таким образом, для получения схемы, соответствующей свободному режиму в цепи необходимо:

1) заменить источники ЭДС и тока, соответственно, на закороченные участки и разрывы;

2) заменить индуктивные и емкостные элементы на элементы с условным «сопротивлением», соответственно, λL и $\frac{1}{\lambda C}$.

Указанные преобразования схемы цепи изображены на рис. 50.

Для получения характеристического уравнения достаточно составить схему цепи в свободном режиме, сформировать систему уравнений, в которую входит свободные составляющие реакций, и приравнять нулю определитель этой системы. Действительно, система уравнений, соответствующая схеме свободного режима, имеет правую часть равную нулю. В такой системе уравнений ненулевые решения (т.е. свободные составляющие реакций – токи и напряжения) могут получиться лишь в том случае, когда определитель системы равен нулю.

Для любого контура цепи в свободном режиме алгебраическая сумма напряжений на элементах контура равна нулю. Поэтому для *k*-го контура справедливо уравнение:

$$\sum_{l=1}^{m} u_{kl \, cB}(t) = 0 \quad \text{или} \quad \sum_{l=1}^{m} z_{kl}(\lambda) \cdot i_{kl \, cB}(t) = 0,$$

где *m* – число элементов в контуре; $i_{kl\,cB}(t)$ – свободная составляющая тока через элемент *l*-й ветви *k*-го контура; $z_{kl}(\lambda)$ – сопротивление элементов, входящих в контур, которое может принимать значение *R*, $\frac{1}{\lambda C}$ или λL , причем: $u_{kl\,cB}(t) = z_{kl}(\lambda) \cdot i_{kl\,cB}(t)$.

Можно получить аналогичное соотношение и для свободной составляющей тока в ветви полагая, что контур образован самой ветвью и остальной частью цепи, которую можно рассматривать, как один сложный элемент, образованный, входящей в него совокупностью элементов (рис.51).

Рис. 51

Обойдя контур, указанный на рис. 51 пунктиром, получим:

$$Z(\lambda) \cdot i_{\rm CB} = 0 , \qquad (3.6)$$

где $Z(\lambda)$ – сопротивление цепи в свободном режиме относительно обозначенных точками узлов.

Для любого узла цепи в свободном режиме алгебраическая сумма токов (втекающих и вытекающих) равна нулю. Поэтому для *k*-го узла справедливо:

$$\sum_{l=1}^{m} i_{kl \, \text{св}}(t) = 0 \quad \text{или} \quad \sum_{l=1}^{m} y_{kl}(\lambda) \cdot u_{kl \, \text{св}}(t) = 0,$$

где *m* – число ветвей, подходящих к узлу; $i_{klcB}(t)$ – свободные составляющие токов в этих ветвях; $u_{klcB}(t)$ – свободные составляющие напряжений между *k*-м и остальными узлами цепи; $y_{kl}(\lambda)$ – проводимость ветвей, соединенных с узлом, которая может принимать значения $\frac{1}{R}$, λC или $\frac{1}{\lambda L}$, причем: $i_{klcB}(t) = y_{kl}(\lambda) \cdot u_{klcB}(t)$.

Свободную составляющую u_{cB} напряжения на элементе цепи можно рассматривать как напряжение между узлами, с которыми соединен элемент, полагая что эти два узла соединены единой ветвью, которую можно рассматривать как один сложный элемент (рис.52), образованный всей совокупностью элементов цепи, тогда:

$$Y(\lambda) \cdot u_{\rm cB} = 0, \qquad (3.7)$$

где $Y(\lambda)$ – проводимость цепи в свободном режиме, записанная относительно указанных на рис. 52 узлов.

Рис. 52

Подставим в однородное дифференциальное уравнение относительно искомой реакции одно из слагаемых, входящих в выражение, которое образует общее решение этого уравнения. Например, для тока $i_{cB} = A \cdot e^{\lambda t}$, где λ – один из корней характеристического многочлена $P_n(\lambda)$, получим:

$$\begin{split} \alpha_n \frac{d^n i_{\rm CB}}{dt^n} + \alpha_{n-1} \frac{d^{n-1} i_{\rm CB}}{dt^{n-1}} + \ldots + \alpha_2 \frac{d^2 i_{\rm CB}}{dt^2} + \alpha_1 \frac{d i_{\rm CB}}{dt} + \alpha_0 \cdot i_{\rm CB} = 0 , \\ \alpha_n \frac{d^n (A e^{\lambda t})}{dt^n} + \alpha_{n-1} \frac{d^{n-1} (A e^{\lambda t})}{dt^{n-1}} + \ldots + \alpha_2 \frac{d^2 (A e^{\lambda t})}{dt^2} + \\ + \alpha_1 \frac{d (A e^{\lambda t})}{dt} + \alpha_0 (A e^{\lambda t}) = 0 , \\ \alpha_n A \lambda^n e^{\lambda t} + \alpha_{n-1} A \lambda^{n-1} e^{\lambda t} + \ldots + \alpha_2 A \lambda^2 e^{\lambda t} + \alpha_1 A \lambda e^{\lambda t} + \alpha_0 A e^{\lambda t} = 0 , \\ P_n(\lambda) \cdot i_{\rm CB} = 0 . \end{split}$$

Сравнив полученное соотношение с (3.6) и учитывая, что $i_{\rm cB} \neq 0$ в течение переходного процесса, приходим к выводу, что

$$P_n(\lambda) = Z(\lambda)$$

и характеристическим уравнением цепи можно считать соотношение $Z(\lambda) = 0$.

Для свободной реакции в виде напряжения аналогичным образом получаем:

$$P_n(\lambda) \cdot u_{\rm cb} = 0 ,$$

и сравнив с (3.7) получаем характеристическое уравнение цепи в виде: $Y(\lambda) = 0$. Таким образом, характеристическое уравнение цепи можно получить из схемы цепи в свободном режиме. Для искомой свободной реакции тока (или напряжения) достаточно составить выражение для подсчета сопротивления $Z(\lambda)$ (проводимости $Y(\lambda)$) относительно указанных на рис. 51 (рис. 52) узлов и найти корни характеристического уравнения в виде $Z(\lambda) = 0$ (или $Y(\lambda) = 0$).

Задача 3.5

Определить порядок цепи и характеристическое уравнение цепи, схема которой изображена на рис. 53.

Рис. 53

1. Заметим, что цепь содержит один емкостной контур C1 - C2 - C3 и одну индуктивную звезду L1 - L2 - L3. Поэтому порядок цепи равен: $n = (n_L + n_C) - (n_3 + n_k) = (3+3) - (1+1) = 4$. Поэтому переходный процесс в цепи описывается дифференциальным уравнением 4-го порядка. Таким же будет порядок характеристического многочлена.

2. Для получения характеристического уравнения цепи изобразим схему цепи в свободном режиме.

На рис. 54 учтено, что в свободном режиме ЭДС E = 0 (вместо источника ЭДС на схеме закоротка) и ток источника тока J = 0 (вместо источника тока – разрыв).

На схеме указаны узлы a и δ , относительно которых записываются выражения для сопротивления $Z(\lambda)$ при разомкнутой ветви $a-\delta$.

Предварительно подсчитаем сопротивление $Z_{\rm BF}(\lambda)$ для участка цепи слева от узлов «в» и «г» (рис. 54):

Выражение для сопротивления относительно узлов *а* и *б* имеет вид:

$$Z(\lambda) = \frac{(Z_{BF}(\lambda) + R_2 + \lambda L_1)\lambda L_2}{Z_{BF}(\lambda) + R_2 + \lambda L_1 + \lambda L_2} + \lambda L_3 = \frac{\left(\frac{k\lambda + 1}{m\lambda^2 + n\lambda} + R_2 + \lambda L_1\right)\lambda L_2}{\frac{k\lambda + 1}{m\lambda^2 + n\lambda} + R_2 + \lambda L_1 + \lambda L_2} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1)(m\lambda^2 + n\lambda)\right]\lambda L_2}{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)} + \lambda L_3 = \frac{\left[\frac{k\lambda + 1 + (R_2 + \lambda L_1 + \lambda L_2)(m\lambda^2 + n\lambda)\right]\lambda L_4 + \lambda L_4 +$$

Характеристическое уравнение цепи получаем, приравняв нулю числитель выражения для $Z(\lambda)$. Несмотря на громоздкость выражений можно заметить, что степень характеристического многочлена (совпадающая со степенью многочлена в числителе $Z(\lambda)$) равна 4. Отметим также, что для получения характеристического уравнения не потребовалось формировать систему уравнений для расчета переходного процесса в цепи 4-го порядка и не потребовалось составлять дифференциальное уравнение 4-го порядка для нахождения токов и напряжений¹.

3.5. Расчет переходных процессов в цепях первого порядка (классическим методом)

Цепь первого порядка содержит один реактивный элемент (и неограниченное число резистивных элементов, а также источников тока и/или ЭДС). Из-за дифференциального (или интегрального) характера связи между током через реактивный элемент и напряжением на элементе реакции во время переходного процесса определяются из дифференциального уравнения первого порядка.

Рассмотрим алгоритм действий, позволяющий найти реакцию, используя классический метод расчета переходных процессов.

1. Искомая реакция представляется в виде суммы свободной и установившейся составляющей: $i = i_{cB} + i_{vcT}$ или $u = u_{cB} + u_{vcT}$.

2. Свободная составляющая в цепи первого порядка имеет вид: $i_{cB} = A \cdot e^{\lambda t}$ или $u_{cB} = B \cdot e^{\lambda t}$, где λ – единственный корень характеристического многочлена первого порядка.

Характеристический многочлен формируется из схемы цепи в свободном режиме, изображенной на рис. 55 (для цепи с индуктивным элементом) и на рис. 56 (для цепи с емкостным элементом).

¹ Эти действия потребовали бы значительно большего объема преобразований.

Рис. 56

На рисунках указана ветвь с реактивным элементом, а остальные элементы (резистивные, закороченные ветви эквивалентные источником ЭДС с нулевой ЭДС и разрывы в ветвях с источниками тока «формирующими» нулевой ток) и схема их соединений показаны условно. Эту часть цепи в свободном режиме можно заменить эквивалентным сопротивлением $R_{3 \text{кв}}$, а схемы цепи упрощаются (см. схемы в правой части рис. 55 и рис. 56).

Участок цепи, расположенный слева от указанных на рис. 55 и рис.56 узлов, имеет сопротивление $Z(\lambda)$, которое совпадает с ха-

рактеристическим многочленом $P(\lambda)$. Из уравнения $Z(\lambda) = 0$ находятся корни характеристического многочлена:

$$\lambda L + R_{_{3KB}} = 0 \quad \rightarrow \quad \lambda_L = -\frac{R_{_{3KB}}}{L} < 0 ,$$
$$\frac{1}{\lambda C} + R_{_{3KB}} = 0 \quad \rightarrow \quad \lambda_C = -\frac{1}{CR_{_{3KB}}} < 0 .$$

Как было отмечено ранее, корни характеристического уравнения должны быть отрицательны. По сути, λ является коэффициентом затухания.

Для оценки длительности переходного процесса вводится (более информативная (нежели λ)) величина τ , которую называют постоянной времени цепи первого порядка:

$$\tau = -\frac{1}{\lambda}$$
, тогда: $\tau_L = \frac{L}{R_{_{ЭКВ}}}$, $\tau_C = CR_{_{ЭКВ}}$ (3.8)

Очевидно, что при $t = 3\tau$ значения свободных составляющих:

$$i_{\rm CB} = A \cdot e^{-\frac{t}{\tau}} / _{t=3\tau} = A \cdot e^{-3},$$
$$u_{\rm CB} = B \cdot e^{-\frac{t}{\tau}} / _{t=3\tau} = B \cdot e^{-3},$$

составляют менее 5 % от значения в момент t = 0 и при $t > 3\tau$ этими составляющими можно пренебречь. Таким образом, длительность переходного процесса в цепи первого порядка составляет (приближенно!) 3т. Постоянная времени τ в цепи первого порядка – это время, за которое свободная составляющая реакции уменьшится в *е* раз.

Таким образом, для определения свободной составляющей реакции целесообразно в соответствии с (3.8) находить постоянную времени, которая не только характеризует свободную составляющую, но и определяет продолжительность переходного процесса.

3. Для нахождения установившейся составляющей i_{yct} и u_{yct} следует рассмотреть режим работы цепи после окончания переходного процесса, то есть при $t \rightarrow \infty$, а практически при $t \ge 3\tau$. Если в цепи содержатся только источники постоянного (либо синусои-

дального) тока и постоянных (либо синусоидальных) ЭДС, то установившиеся реакции определяются путем расчета модели цепи постоянного (либо синусоидального) тока. Поэтому достаточно сформировать и решить систему алгебраических уравнений, а не искать установившиеся реакции как частотное решение неоднородного линейного дифференциального уравнения.

4. После выполнения действий (п.2 и п.3) реакции имеют вид:

$$i = A \cdot e^{-\frac{t}{\tau}} + i_{ycr}$$
 или $u = B \cdot e^{-\frac{t}{\tau}} + u_{ycr}$. (3.9)

В этих соотношениях пока неизвестны постоянные интегрирования (A и B). Их значения можно определить из начальных условий i(0+) или u(0+), которые находятся из законов коммутации непосредственно (в случае независимых начальных условий, т.е. для тока $i_L(0+)$ и напряжения $u_C(0+)$) или после определения независимых начальных условий в случае, если i(0+) и u(0+) являются зависимыми начальными условиями. На этом этапе целесообразно использовать схему цепи, которая моделирует состояние цепи в момент времени t=0+ (см. примеры и выводы в подразделе «Виды начальных условий и определение порядка цепи»).

Примеры

Задача 3.6

Определить ток $i_C(t)$ через емкостной элемент и напряжение на этом элементе $u_C(t)$ после размыкания ключа в цепи, схема которой изображена на рис. 57, если E = 1,5 В, r = 5 Ом, R = 20 Ом, C = 100 мкФ. Изобразить временные диаграммы $i_C(t)$ и $u_C(t)$, указав на них значения $i_C(t < 0)$ и $u_C(t < 0)$ до коммутации.

Рис. 57

Решение:

1. Для расчета переходного процесса применяем классический метод. Искомые реакции представляем в виде:

$$i_C(t) = i_{C_{CB}} + i_{C_{YCT}}, \quad u_C(t) = u_{C_{CB}} + u_{C_{YCT}}.$$

2. Цепь содержит один реактивный элемент и является цепью первого порядка. Поэтому свободные составляющие реакций (как общее решение однородного дифференциального уравнения перво-

го порядка) ищем в виде: $i_{C_{CB}} = A \cdot e^{-\frac{t}{\tau}}$, $u_{C_{CB}} = B \cdot e^{-\frac{t}{\tau}}$ – в соответствии с (3.9), где: $\tau = C \cdot R_{_{3KB}}$ – постоянная времени цепи первого порядка.

Схема цепи в свободном режиме изображена на рис. 58.

Очевидно, что $R_{_{2KB}} = R$, тогда:

$$\tau = C \cdot R_{_{3KB}} = 100 \cdot 10^{-6} \cdot 20 = 2$$
 [Mc].

3. После окончания переходного процесса (теоретически при $t \to +\infty$, практически при $t > 3\tau$) цепь работает в установившемся режиме. Схема цепи изображена на рис. 59.

Очевидно, что в таком контуре (из-за отсутствия разности потенциалов) ток не протекает $i_{Cycr} = 0$ и напряжение на емкостном элементе отсутствуют $u_{Cycr} = 0$. Напряжение на емкостном элементе, существовавшие до коммутации и в момент размыкания ключа, и энергия запасенная в емкостном элементе $\left(\frac{1}{2}C \cdot u_{C}^{2}\right)$ за время переходного процесса рассеялись (перешли в другие ветви энергии на резистивном элементе *R*).

4. Таким образом, в этой задаче реакции содержат лишь свободную составляющую: $i_C(t) = A \cdot e^{-\frac{t}{\tau}}$, $u_C(t) = B \cdot e^{-\frac{t}{\tau}}$.

Постоянные интегрирования A и B находим из начальных условий. Напряжение uC(0-), независимое начальное условие, из закона коммутации (с учетом результата (3.5), полученного в решении задачи 3.4) получаем:

$$u_C(0+) = u_C(0-) = \frac{E \cdot R}{r+R} = \frac{1,5 \cdot 20}{5+20} = 1,2$$
 [B].

При t = 0 имеем: $u_C(0) = B \cdot e^0 = B = 1,2$ [B].

Ток $i_C(0)$ – зависимое начальное условие. Его находим, используя схему цепи (рис. 60) в момент t = 0 +, где источник $E_{C0} = u_C(0+) = 1,2$ [В] моделирует наличие на емкостном элементе напряжения в момент коммутации.

Очевидно, что ток $i_{C}(0+)$ направлен противоположно току i(0+), который создает источник E_{C0} :

$$i(0+) = -i(0+) = -\frac{E_{C0}}{R} = -\frac{1,2}{20} = -0,06$$
 [A].

При t = 0 имеем: $i_C(0) = A \cdot e^0 = A = -0,06$ [A].

5. Схема цепи до коммутации изображена на рис. 61.

В этой цепи по внешнему контуру протекал постоянный ток *I*, а ток $I_C = 0$. Временные диаграммы для реакции: $i_C(t) = -0,06 \cdot e^{-\frac{t}{\tau}}$, $u_C(t) = 1, 2 \cdot e^{-\frac{t}{\tau}}$, где $\tau = 2$ [мс] изображены на рис. 62 и рис. 63.

Важное практическое замечание

Проведем касательную в любой точке графиков свободных составляющих. Например, для графика $i_C(t)$ в точке $i_C(t_2 = 2 \text{ мс})$, а для графика $u_C(t)$ в точке $u_C(t_0 = 0)$. Эти касательные на рис. 62 и рис. 63 указаны пунктирными линиями. Найдем длину отрезка *PS* оси абсцисс (времени), заключенного между точкой *S* пересечения касательной с этой осью и точкой *P*, являющейся проекцией на ось абсцисс точки, в которой проведена касательная. Из прямоугольного треугольника *KPS* получаем для рис. 62:

$$PS = KP \cdot \text{ctg}\gamma = \frac{KP}{\text{tg}\gamma} = \frac{|i_C(t_2)|}{\frac{di_C(t_2)}{dt}} = \frac{\left|-0,06 \cdot e^{-\frac{t_2}{\tau}}\right|}{-0,06 \cdot e^{-\frac{t_2}{\tau}} \cdot \left(-\frac{1}{\tau}\right)} = \tau;$$

для рис. 63:

$$PS = KP \cdot \text{ctg}\gamma = \frac{KP}{-\text{tg}(\pi - \gamma)} = \frac{u_C(t_0)}{-\frac{du_C(t_0)}{dt}} = \frac{1, 2 \cdot e^0}{-1, 2 \cdot e^0} \cdot \left(-\frac{1}{\tau}\right) = \tau.$$

Таким образом, касательная, проведенная в любой точке графика свободной составляющей реакции, отсекает на оси времени отрезок (считая от абсциссы точки, в которой проведена касательная) равный постоянной времени цепи первого порядка. Указанный прием используют на практике для приближенного экспериментального определения постоянной времени цепи по зафиксированным осциллограммам токов или напряжений.

Задача 3.7

Определить ток $i_1(t)$ в цепи, схема которой изображена на рис. 64, после замыкания ключа, если известно E = 2,4 [B], C = 0,3 [мкФ], $r_1 = 8$ [Ом], $r_2 = 10$ [Ом], $r_3 = 40$ [Ом], $u_C(0) = 0$.

Решение:

1. Воспользовавшись классическим методом, представим искомую реакцию в виде:

$$i_1 = i_{1_{\text{CB}}} + i_{1_{\text{YCT}}} = A \cdot e^{-\frac{t}{\tau}} + i_{1_{\text{YCT}}}.$$

2. Находим постоянную времени т. Для этого изобразим схему цепи в свободном режиме (рис. 65) при этом источник ЭДС заменим закороткой, а емкостной элемент - «условным» сопротивлением $\frac{1}{\lambda C}$

Рассчитываем R_{экв} между узлами, с которыми соединен емкостной элемент:

$$R_{_{3KB}} = r_2 + r_1 || r_3 = 10 + \frac{8 \cdot 40}{8 + 40} = \frac{50}{3} [OM].$$

$$\tau = C \cdot R_{_{3KB}} = 0, 3 \cdot 10^{-6} \cdot \frac{50}{2} = 5 [MKC].$$

Тогда:

3. Можно считать, что переходной процесс закончится спустя время $t > 3\tau = 15$ [мкс]. С этого времени в цепи (рис. 66) имеет место установившейся режим, при котором характер реакций определяется характером воздействия: постоянный источник ЭДС порождает постоянные токи в ветвях.

Через ветвь с емкостным элементом постоянный ток не протекает $I_C = 0$, поэтому:

$$i_{1_{\text{YCT}}} = \frac{E}{r_1 + r_3} = \frac{2,4}{8+40} = 0,05 \text{ [A]}.$$

4. Искомая реакция имеет вид: $i_1 = A \cdot e^{-\frac{t}{\tau}} + 0,05$. Значение постоянной A находим из начальных условий. Поскольку значение $i_1(0)$ является зависимым начальным условием, предварительно определяем независимые начальные условия – напряжение на емкостном элементе $u_C(0+)$. Из закона коммутации $u_C(0+) = u_C(0-) = 0$ (по условию).

Тогда в момент коммутации t = 0 + в схеме модели цепи емкостной элемент должен быть заменен «закороткой» (рис. 67). Теперь может быть найдено значение $i_1(0+)$:

$$i_1(0+) = \frac{E}{r_1 + r_2 \parallel r_3} = \frac{2,4}{8 + \frac{10 \cdot 40}{10 + 40}} = 0,15 \text{ [A]}.$$

Это начальное условие позволяет определить постоянную А:

$$i_1(t=0) = A \cdot e^0 + 0,05 = i_1(0+) = 0,15$$

Отсюда: $A + 0,05 = 0,15 \rightarrow A = 0,1$ [A]. Таким образом, $i_1(t) = 0,1 \cdot e^{-\frac{t}{\tau}} + 0,05$ [A]. На рис. 68 изображена временная диаграмма $i_1(t)$, на которой показано и значение тока до коммутации $i_1(t < 0) = \frac{E}{r_1 + r_3} = 0,05$ [A].

Задача 3.8

Определить напряжение $u_1(t)$ после размыкания ключа в цепи, схема которой изображена на рис. 69, если известно, что: E = 2,4 [B]; L = 12 [мГн]; $r_1 = 2$ [Ом]; $r_2 = r_3 = 4$ [Ом].

1. Для цепи первого порядка искомую реакцию ищем в виде (используя классический метод расчета):

$$u_1(t) = B \cdot e^{-\frac{t}{\tau}} + u_{1ycr}$$

2. Находим постоянную времени т цепи. Для этого изобразим схему цепи в свободном режиме (рис. 70) и учтем, что в этой схеме E = 0, а индуктивный элемент «обладает»

сопротивлением λL . Очевидно, что значение сопротивления $R_{3 \text{KB}} = r_1 + r_3$, тогда в соответствии с (3.8):

$$\tau = \frac{L}{R_{_{3KB}}} = \frac{L}{r_1 + r_3} = \frac{12 \cdot 10^{-3}}{2 + 4} = 2 \text{ [mc]}.$$

3. Установившийся режим в цепи наступает при $t > 3\tau = 6$ [мс]. В этом режиме (рис. 71) в цепи протекает постоянный ток *I* и напряжение $U_L = 0$, а на-

пряжение u_{1ycr} составляет:

$$u_{1ycT} = I \cdot r_1 = \frac{E \cdot r_1}{r_1 + r_3} = \frac{2.4 \cdot 2}{2 + 4} = 0.8 \text{ [B]}.$$

4. Для искомой реакции получено выражение:

 $u_1(t) = B \cdot e^{-\frac{t}{\tau}} + 0.8$, в кото-

ром следует определить постоянную интегрирования *B*. Находим независимое начальное условие из законов коммутации $i_L(0+) = i_L(0-) = \frac{1}{2} \cdot \frac{E}{(r_1 + r_2 || r_3)} = 0,3$ [A] и получаем схему модели

цепи (рис. 72) в момент времени t = 0 + (как это было сделано в ранее решенной задаче 3.2). Очевидно, что в этот момент времени: $u_1(0+) = J_{L0} \cdot r_1 = i_L(0+) \cdot r_1 = 0, 3 \cdot 2 = 0, 6$ [B].

По найденному начальному условию определяем постоянную В:

$$u_1(t=0+) = A \cdot e^0 + 0, 8 = u_1(0+) = 0, 6$$
 [B].

Отсюда: A + 0,8 = 0,6, значит A = 0,2.

Таким образом, определена реакция $u_1(t) = 0, 2 \cdot e^{-\frac{t}{\tau}} + 0, 8$, временная диаграмма которой изображена на рис.73. Значение реакции до коммутации:

Список литературы

1. Атабеков Г.И. Теоретические основы электротехники. Ч.І. Линейные электрические цепи. М.: Энергия, 1978.

2. Бессонов Л.А. Теоретические основы электротехники. М.: Высшая школа, 1978.

3. Ионкин П.А., Даревский А.И. Теоретические основы электротехники. Т.І. Высшая школа, 1976.

4. Львов Е.И. двухполюсные цепи. М.: МИФИ, 1984.

5. Касаткин А.С., Немцов М.В. Электротехника. М.: Энергоатомиздат, 1998.

6. Лабораторный практикум по линейным электрическим цепям с сосредоточенными параметрами / Под ред. В.Г. Терентьева, И.В. Пищулина. М.: МИФИ, 1987.

7. Гаркуша О.В., Школьников Э.Я. Линейные электрические цепи переменного тока. М.: МИФИ, 2004.

Варламов Николай Викторович

Школьников Эдуард Яковлевич

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

Часть II

Учебное пособие

Редактор Н.В. Шумакова Оригинал-макет изготовлен С.В. Тялиной

Подписано в печать 01.12.2008 Формат 60×84 1/16 Печ. л. 5,5 Уч.-изд. л. 5,5 Тираж 150 экз. Изд. № 4/89 Заказ №

Московский инженерно-физический институт (государственный университет) 115409, Москва, Каширское ш., 31 Типография «Тровант», г. Троицк, Московской обл.