МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ».

Физический факультет

Кафедра общей физики

Попов Давид Михайлович

КУРСОВАЯ РАБОТА

Изучение принципов работы диссектора

Электромагнитный практикум, 2 курс, группа №18305

Научный руководитель:

Тимошенко М.В.

Оценка научного руководителя

«____»____2019г.

Преподаватель практикума:

к.ф.-м.н. Иванов И.А.

Оценка преподавателя практикума

«____»___2019г.

Куратор практикума:

к.техн.н. Астрелин В.Т.

Итоговая оценка

«____»___2019г.

Изучение принципов работы диссектора

Попов Давид Михайлович

Физический факультет. Электромагнитный практикум. Курсовая работа.

Группа № 18305, 3 семестр, 2019 год.

Научный руководитель:

Тимошенко Максим Вадимович

Аннотация

В данной работе рассмотрены основные принципы работы диссектора – электронно-оптического прибора, работающего в стробоскопическом режиме и регистрирующего продольное распределение пучка, а также изучены факторы, формирующие распределение пучка электронов, двигающегося в циклическом ускорителе. В работе рассматривался диссектор на коллайдере ВЭПП-2000 ИЯФ СО РАН. Прибор был откалиброван путём измерения зависимости выходного сигнала в калибровочном режиме в зависимости от задания амплитуды развертки, а также измерена зависимость длины пучка от напряжения ускоряющего резонатора. Результаты измерений были обработаны и проанализированы (произведено сравнение с теорией).

Оглавление

1.	Введение.	4
2.	Теоретическая часть.	4
3.	Описание установки.	8
4.	Экспериментальная часть.	13
5.	Вывод	17
6.	Список литературы.	17
Пр	иложение.	18

1. Введение.

Ускорители заряженных частиц используются для обеспечения исследований в области физики элементарных частиц. Кроме того, их применяют для получения синхротронного излучения, которые используются в материаловедении, химии, биологии, медицине и т.д. К качеству пучков в современных ускорителях предъявляются очень высокие требования, поэтому эффективная эксплуатация ускорительных установок практически немыслима без точных и надежных систем диагностики пучка, обеспечивающих возможность регулярной настройки параметров ускорителя по результатам измерений.

В данной работе пойдет речь об измерении продольной длины пучка в циклическом ускорителе. Характерная длина сгустка в современных электронпозитронных ускорителях составляет величину порядка нескольких сантиметров, поэтому регистрирующая аппаратура должна обладать временным разрешением не хуже $3*10^{-11}$ с в сочетании с чувствительностью, достаточной для измерения размеров пучков малой интенсивности. Кроме того, система измерения должна обеспечить наблюдение динамики пучка. Для таких измерений подходит диссектор.

Во втором разделе излагается теория, описывающая поведение пучка в циклическом ускорителе. В третьем разделе представлены описание прибора и принцип его работы. В четвертом разделе изложены результаты эксперимента, которые позволяют узнать, подходит ли данная теория для описания поведения пучка в циклическом ускорителе.

2. Теоретическая часть.

В ходе выполнения курсовой работы был рассмотрен диссектор, работающий на коллайдере ВЭПП-2000. ВЭПП-2000 является электрон-позитронным циклическим ускорителем. Он работает на энергиях 160 – 1000 МэВ, его периметр равен 24.39 м, радиус кривизны поворотных магнитов равен 1,4 м [4,

4

стр. 4-5]. При таких параметрах ускорителя присутствует синхротронное излучение.

Синхротронное излучение — электромагнитное излучение, испускаемое заряженными частицами, движущимися с релятивистскими скоростями по траекториям, искривлённым магнитным полем [1, стр. 64].

Частицы, двигаясь в коллайдере по окружности, испытывают ускорение, поэтому излучают.

Летая по окружности, релятивистская частица несет впереди себя узкий излучения. Удаленный, конус малого размера детектор излучения, нацеленный вдоль касательной к этой окружности, видит излучение только тогда, когда частица находится в пределах малой дуги ~ $2/\gamma$, примыкающей к точке касания оси наблюдения с окружностью, Рис. 1а [3, стр. 6]. Это следует из того, что в системе отсчета, сопутствующей пучку, излучение является дипольным [5, стр. 50]. При переходе в лабораторную систему отсчета, распределение мощности меняется. Диаграмма мгновенного распределения мощности синхротронного излучения в лабораторной системе отсчета изображена на Рис. 16 [2, стр. 12].

Рисунок 1а. Конус синхротронного излучения, который виден детектору.

Рисунок 16. Диаграмма направленности мощности синхротронного излучения. Для большей наглядности вырезана одна четверть пространственной фигуры.

Мощность синхротронного излучения, которая определяется потерей энергии частицы за один оборот в циклическом ускорителе равна $W = \frac{4\pi}{3} \frac{e^2}{r_0} \gamma^4$ (1) [3, стр. 4], где *e* - заряд электрона, r_0 - радиус кривизны траектории движения пучка, γ - релятивистский фактор.

Вследствие синхротронного излучения частицы теряют энергию, поэтому для поддержания стабильности параметров пучка, необходимо непрерывно её восполнять. Эту функцию выполняет резонатор, в котором генерируется высокочастотное синусоидальное напряжение $f_{pes} = qf_{nyчкa}$, где $f_{nyчкa}$ - частота обращения пучка в ускорителе, поле которого направленно вдоль движения пучка, Рис. 2.

Рисунок 2. Принцип работы резонатора.

Для ВЭПП-2000 необходимо выбирать фазу φ_2 , Рис. 2, прихода пучка в резонатор. Выбор фазы зависит от магнитной структуры ускорителя, а также

от самих частиц. Если частицы с большей энергией имеют период обращения меньший, чем частицы с более низкой энергией, то нужно выбирать фазу φ_2 , в противном случае φ_1 , Рис. 2.

Для электронных ускорителей, нельзя пренебрегать изменениями импульса и энергии электронов, во время циркуляции электронов в кольце ускорителя. Рассмотрим затухание поперечных (бетатронных) колебаний. Наиболее простой способ рассмотрения этого вопроса – это ввести в усредненные уравнения вертикальных бетатронных колебаний силу радиационного трения F_{pao} . Она вызвана отдачей при излучении частицей определенного потока энергии, что означает и соответствующий поток импульса. Для ультрарелятивистской частицы этот поток сосредоточен в узком конусе вдоль ее скорости, поэтому реакцию излучения можно с большой точностью считать направленной против мгновенной скорости:

$$\overline{F_{pad}} = -\frac{I}{c}\frac{v}{v} = -\frac{I}{c^2}\overline{v}$$
 [3, ctp. 16], $F_{pad,z} = -\frac{I}{c^2}\overline{z}$ [3, ctp. 16].

Вертикальную проекцию силы реакции излучения подставляем в усредненное уравнение вертикальных бетатронных колебаний: $\ddot{z} + \omega_{\beta}^2 z = \frac{1}{\gamma m} F_{\rho a \sigma, z} = -\frac{I}{\gamma m c^2} \dot{z}$ [3, стр. 16]. С учетом соотношений $\gamma m c^2 = E_0$, $I = \frac{W_0}{T_0}$, где T_0 - период обращения пучка, и тем самым мы нашли декремент затухания вертикальных бетатронных колебаний: $\zeta_z = \frac{W_0}{2T_0E_0}$, а декремент затухания радиальных бетатронных колебаний ζ_x , в свою очередь равен $\zeta_x = \zeta_z (1-D)$ [3, стр. 19], а для синхротронных колебаний $\zeta_E = \frac{1}{2T_0} \frac{W_0}{E_0} (2+D)$ [3, стр. 19], где D безразмерный параметр, определяющийся магнитной структурой ускорителя.

Так же имеет место эффект, называемый квантовой раскачкой, который на даст колебаниям затухнуть. Дело в том, что процесс излучения фотонов

имеет случайный характер, которые будут давать вклад в поперечный и продольный импульс электронов. Равновесные амплитуды таких колебаний определяют ширину гауссова распределения отклонений ΔE, формирующегося под действием множества (малых) некоррелированных случайных толчков при излучении квантов:

$$p(\Delta E) = \frac{1}{\sqrt{2\pi}\sigma_{E}} \exp[\frac{(\Delta E)^{2}}{2\sigma_{E}^{2}}] [3, \text{ стр. 24}], \qquad \sigma_{E}^{2} = \overline{(\Delta E)^{2}} [3, \text{ стр. 24}],$$
$$\frac{\sigma_{E}^{2}}{E^{2}} = \frac{55\lambda_{e}\gamma^{2}}{32\sqrt{3}r_{0}J_{E}} (2) [3, \text{ стр. 24}], \text{ где } J_{E} = 2 + D, \lambda_{e} - длина волны электрона.$$

Продольные отклонения электронов в пучке, сгруппированном вокруг равновесной частицы, связаны с $\Delta E = A\cos(\Omega_s t + \varphi)$ [3, стр. 25], где $\Omega_s^2 = \omega_0^2 \frac{q\alpha_p e U_0}{2\pi E_0} \cos \varphi_2$ (3) [3, стр. 11] - частота синхротронных колебаний, где ω_0 частота обращения пучка, α_p - коэффициент уплотнения орбиты, как видно из формулы (7), см. приложение, определяющийся магнитной структурой ускорителя, как и D, см. формулу (8), см. приложение, уравнением синхротронных колебаний: $\tau = \alpha_p \frac{\Delta E}{E}$. Тогда установившееся распределение длины пучка будет так же гауссово, причем, $\sigma_l = \frac{c\alpha_p}{\Omega_c} \frac{\sigma_E}{E}$ (4) [3, стр. 25].

3. Описание установки.

Электронно-оптическая хронография относится к числу основных методов прямого измерения параметров быстропротекающих процессов в субнаносекундном временном диапазоне. Стробоскопический вариант метода используется для определения продольного размера пучка в циклических ускорителях. В качестве электронно-оптического преобразователя применяется диссектор.

Развертка диссектора, схема которого изображена на Рис. З является линейной при некоторых параметрах. Распределение импульса синхротронного излучения повторяет форму пучка частиц, циркулирующих в ускорителе. Форма пучка электронов, эмитированных с фотокатода диссектора, повторяет, в свою очередь, форму импульса синхротронного излучения. Высокочастотная развертка поворачивает это распределение – в итоге мы имеем некоторое распределение электронов на экране (в плоскости диафрагмы), которое соответствует распределению электронов в циркулирующем в ускорителе пучке. Иными словами, отклоняющая система диссектора позволяет преобразовать временное распределение синхротронного излучения от пучка в пространственное распределение фотоэлектронов в плоскости диафрагмы. На ряду с напряжением развертки, на этих же отклоняющих пластинах, подается ещё и сканирующее напряжение, которое медленно протаскивает распределение фотоэлектронов на экране. Получается, что на каждом обороте пучка в ускорителе из этого распределения вырезается диафрагмой последовательно различные участки, поскольку за один оборот пучка невозможно было бы измерить распределение, из-за временного разрешения АЦП, принимающего сигнал. Выходной сигнал диссектора изображен на Рис. 11, см. приложение.

Рисунок 3. Схема диссектора. $E = E_{pa36} + E_{cкан}$, $E_{pa36} = E_0 \cos \omega t$ – напряжение развертки, $E_{cкан}$ – сканирующее пилообразное напряжение с частотой 50 Гц,

*E*₁ - ускоряющее напряжение, 1 – фотокатод, 2 – фокусирующий катод, 3 – отклоняющие пластины, 4 – диафрагма, 5 – вторично электронный умножитель Рис. 4.

Рисунок 4. Схема вторично электронного умножителя.

Во вторично электронный умножитель поступает ток, создающийся фото эмиссией, после чего этот ток увеличивается в некоторое постоянное количество раз, поступая на анод, чтобы этот ток можно было измерить осциллографом. Чтобы понять, какие параметры определяют линейность, нужно решить следующую задачу:

На фотокатод попадает постоянный импульс длительности τ . Этот сигнал разворачивается в поле $E_0 \sin(\omega t + \varphi_0)$, начальная скорость вторичных электронов равна нулю, а так же их ускоряет поле E_1 .

Рисунок 5.

Начало координат расположим в центре распределения фотоэлектронов Рис. 5. Примем отношение заряда электрона к его массе равным единице.

 $t_1 = \sqrt{\frac{2l}{E_1}}$ - время, за которое фотоэлектрон долетит до экрана с момента его

выбивания.

Найдём, куда будет попадать начало и конец сигнала.

фотоэлектрона.

вылетевшего фотоэлектрона. Начальный момент времени $t_0 = \tau$.

Поэтому координаты конца и начала сигнала будут следующими:

$$x_{1} = \int_{0}^{t_{1}} \mathbf{v}_{x_{1}} dt = \frac{E_{0}}{\omega} (t_{1} \cos \varphi_{0} + \frac{\sin \varphi_{0} - \sin(\varphi_{0} + \omega t_{1})}{\omega}) .$$
$$x_{2} = \int_{0}^{t_{1}} \mathbf{v}_{x_{2}} dt = \frac{E_{0}}{\omega} (t_{1} \cos(\omega \tau + \varphi_{0}) + \frac{\sin \varphi_{0} - \sin(\varphi_{0} + \omega t_{1})}{\omega}) .$$

Ширина получившегося на экране распределения:

$$x_1 - x_2 = \frac{E_0 t_1}{\omega} (\cos \varphi_0 - \cos(\omega \tau + \varphi_0)) = \frac{E_0 t_1}{\omega} \sin(\frac{\omega \tau}{2} + \varphi_0) \sin \frac{\omega \tau}{2} .$$

Чтобы выполнялась линейность, необходимо, чтобы $\omega \tau \ll 1$, т.е., чтобы длительность светового импульса была много меньше периода развертки, и $\varphi_0 = \frac{\pi}{2}$.

Тогда $x_1 - x_2 = E_0 t_1 \tau$. Добавив размерность, получаем: $x_1 - x_2 = \frac{eE_0 t_1 \tau}{m}$.

Чтобы центр распределения фотоэлектронов совпадал с центром развертки, нужно чтобы $x_1 + x_2 = 0$.

$$x_1 + x_2 = \frac{E_0}{\omega^2} (2 - 2\cos(\omega t_1))$$
, поэтому, нужно, чтобы $\omega t_1 = 2\pi k$

Рисунок 6. Сигнал от постоянного источника света и от синхротронного излучения, видимый на экране.

Казалось бы, что из-за линейности развертки $\frac{\tau_{CH}}{\tau_{u_{3M}}} = \frac{T_{p_{a_{3B}}}}{T_{u_{3M}}}$ (5), но проблема в том, что линейность масштабирования будет наблюдаться лишь в

проолема в том, что линеиноств масштабирования будет наолюдаться лишь в близи центра развертки и, на самом деле, будет измеряться величина T_0 , поэтому $T_{_{изм}}$ нужно умножить на π , как видно из Рис. 6. Тогда формула (5)

преобразуется в
$$\frac{\tau_{CH}}{\tau_{u_{3M}}} = \frac{T_{pa_{36}}}{\pi T_{u_{3M}}}$$
 (6).

Так же, необходимо учесть и аппаратную функцию, которая появляется вследствие конечности размеров диафрагмы и пучков света, попадающих на фотокатод. Аппаратная функция - характеристика линейного измерительного устройства, устанавливающая связь измеренной величины на выходе устройства с истинным значением этой величины на его входе. Полагая диссектор линейной преобразующей системой, можно считать, что зависимость от времени анодного тока, являющегося выходным сигналом диссектора, определяется интегралом свертки формы входного сигнала с аппаратной функцией [1, стр. 81], то есть ширина формы входного сигнала будет равна $\sqrt{\tau_{usm}^2 - \tau_a^2}$, поскольку аппаратная функция имеет гауссовскую форму. Т.е. из формулы (6) получаем, что $\frac{\tau_{CH}}{\sqrt{\tau_{usm}^2 - \tau_a^2}} = \frac{2}{\omega_{pase}T_{usm}}$, где τ_a ширина аппаратной функции, которую можно измерить, выключая напряжение развертки.

4. Экспериментальная часть.

Была проверена линейность роста амплитуды развертки диссектора с увеличением управляющего напряжения источника для её генерации. Проводились изменения фазы развертки относительно фазы циркуляции пучка в ускорителе, таким образом находились крайние положения пучка в плоскости диафрагмы диссектора при разных напряжениях развертки. Имеют смысл именно крайние положения пучка, а не пики сигнала от постоянного источника света, изображенные на Рис. 6, поскольку свет от источника и синхротронное излучение поступают фотокатод на диссектора, изображенного на Рис. 3, в разные места, что дает разнесение распределений фотоэлектронов на экране, сигнал на выходе диссектора изображен на Рис. 11, см. приложение. На Рис. 7 изображен график зависимости разницы координат крайних положений пучка и координат центра развертки в единицах АЦП от управляющего напряжения, задающего амплитуду напряжения развертки, из которого можно сделать вывод, что развертка действительно линейна. Так же,

на Рис. 7 изображены аппроксимирующие прямые, построенная методом наименьших квадратов.

Рисунок 7. Развертка диссектора. 1 – прямая, аппроксимирующая зависимость координат центра развертки, 2 - прямая, аппроксимирующая зависимость разницы координат крайних положений, 3 – разница координат крайних положений, 4 – координаты центра развертки.

Так же, для проверки теории, изложенной в теоретической части, производилось изменение амплитуды напряжения резонатора U, параллельно этому измерялась зависимость U и σ_i от времени t, графики которых представлены на Рис. 10, см. приложение. Сначала выбирались значения U и σ_i , которые замерялись одновременно, после, нуль времени выбирался в момент первого такого измерения. После, отсекалась начальная часть данных, которая замерялась при попытках научиться менять напряжение резонатора, эта часть была определена как первые 100 сек. измерений, далее измерения снова приводились к общему нулю времени. После, время было разбито на равные интервалы, причем количество интервалов было равно целой части от 5T, где T - сум-

марное время проведения эксперимента. Если в какой-то интервал не попадало одно из измерений U или σ_i , то интервал объединялся с предыдущим. После того, считалось среднее значение U и σ_i в каждом интервале и их среднеквадратичные отклонения. После того был простроен график $\sigma_i(U)$ изображенный на Рис. 8а. Так же, на Рис. 8а изображена теоретическая зависимость $\sigma_i(U)$. Теоретическая зависимость была получена с помощью формулы (4), в которую подставлялась Ω_s из формулы (3), где $\cos \varphi_2$ считается из того, что $W = eU \sin(\varphi_2)$, что можно заметить из Рис. 2, а W определялась из формулы (1). Гармоника резонатора q = 14. Энергетический разброс $\frac{\sigma_E}{E}$ и α_p были получены с помощью численного моделирования магнитной структуры в программе "RING" (разработка с.н.с. ИЯФ Лаборатории №11 Лысенко А. П.), которая использовала формулы (2), (7), см. приложение, (8), см. приложение.

Рисунок 8а. Экспериментальный и теоретический график зависимости σ_l(U). 1 – теоретическая кривая, 2 - экспериментальные данные.

Так же, была построена экспериментальная и теоретическая зависимость $\sigma_l(U^{-\frac{1}{2}})$, график которой изображен на рис. 8б., его имеет смысл построить, т.к. из рассуждений изложенных выше получается, что теоретическая ширина распределения пучка по длине пропорциональна $U^{-\frac{1}{2}}$.

Рисунок 8б. Экспериментальный и теоретический график зависимости $\sigma_l(U^{-\frac{1}{2}})$. 1 – прямая, аппроксимирующая экспериментальные данные, 2 – теоретическая прямая, 3 – экспериментальные данные.

Поскольку α_p и Ω_s определяются параметрами ускорителя, а энергетический разброс определяется параметрами пучка, можно сделать вывод, что расхождение экспериментальных данных и теоретических обусловлено тем, что весомый вклад в σ_E вносят не только квантовые флуктуации. Т.к. квантовые флуктуации происходят независимо от других явлений, то распределение пучка по энергиям будет квадратичной суммой эффектов от квантовых флуктуаций и других явлений. Т.е. $\sigma_E^2 = \sigma_{\kappa e}^2 + \sigma_{other}^2$ (7), где $\sigma_{\kappa e}$ -

ширина распределения, определяемая квантовыми флуктуациями, σ_{other} ширина распределения, определяемая другими эффектами. Из формулы (7) с помощью экспериментальных данных, зная $\sigma_{\kappa s}$ из теории, можно построить графики зависимости σ_{other} от U и $U^{-\frac{1}{2}}$, Рис 9а, см. приложение, а так же $\frac{\sigma_{other}}{\sigma_E}$ от U и $U^{-\frac{1}{2}}$, Рис. 9б, см. приложение.

5. Вывод.

В ходе выполнения курсовой работы был рассмотрен принцип работы электронно-оптического преобразователя диссектора, из теоретических расчетов были получены условия, при которых развертка диссектора линейна, а также, была получена формула для расчета ширины распределения пучка по длине $\frac{\tau_{CH}}{\sqrt{\tau_{u_{SM}}^2 - \tau_a^2}} = \frac{2}{\omega_{pase}T_{u_{SM}}}$. Был разобран принцип действия резонатора. Проверено, что изменение амплитуды развертки в выходном сигнале диссектора происходит линейно с изменением управляющего напряжения развертки, что пространственное распределения пучка имеет нормальный вид.

Стало ясно, что продольное распределение пучка определяется не только квантовыми флуктуациями, но и другими эффектами, предположительно такими, которые влияют на значение энергетического разброса частиц в пучке, однако, их выявление и изучение не входило в рамки данной работы, но является потенциальным её продолжением.

6. Список литературы.

- 1. Смалюк В. В. Диагностика пучков заряженных частиц в ускорителях. Новосибирск, издательство "Параллель", 2009. С. 64-89.
- Басов Н. Г. Синхротронное излучение. Москва, издательство "Наука", 1975, С. 3-26.

- Переведенцев Е.А. Радиационные эффекты в циклических ускорителях.
 Учебное пособие по спецкурсу "Циклические ускорители" 18 декабря 2013 г. - http://accel.inp.nsk.su/refs/Perevedentsev_RadEffects.pdf
- Д. Е. Беркаев. Системы автоматизации в научных исследованиях и промышленности. - Управление энергией встречных электронпозитронных пучков на ускорительном комплексе ВЭПП-2000. -Институт ядерной физики им. Г. И. Будкера СО РАН, г. Новосибирск, 2013. С. 4-5. - http://inp.nsk.su/~kozak/papers/avt_2015_1r.pdf
- Яковлев В. И. Классическая электродинамика. Учебное пособие, часть 3.- Новосиб. гос. ун-т, Новосибирск, 2014. С. 50. http://phys.nsu.ru/cherk/Eldin/Dinhead.pdf

Приложение.

 $\alpha_p = (\frac{D(s)}{r_0(s)})$, где D(s) - дисперсионная функция. (7)

Рисунок 10. Необработанные экспериментальные данные.

Рисунок 11. Сигнал на выходе диссектора.