МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ».

Физический факультет
Кафедра общей физики
Нагулевич Матвей Валерьевич
КУРСОВАЯ РАБОТА

Влияние фазовых ошибок магнитного поля на спектральную характеристику ондулятора

Практикум по электромагнетизму, 2 курс, группа №19301

науч	ныи руков	одитель:	
_	-	н Яков Валерье руководителя	вич
<u> </u>	»	20	— г.
Преп	одаватель	практикума:	
_		пий Вячеславлв ателя практику	
<u> </u>		20	– Г.
Кура	тор практи	кума:	
	н. В.Т. Астј овая оценка	релин	
~	»	20	— г.

Аннотация

Целью работы являлось изучение влияния фазовых ошибок магнитного поля на спектральную характеристику ондулятора. Для этой цели были выведены уравнения движения для ультрарелятивистских электронов в синусоидальном магнитном поле ондулятора и его излучение, сравнивается излучение для различных фазовых ошибок и рассматриваются сами фазовые ошибки в измеренном магнитном поле станции 1-1"Микрофокус".

Ключевые слова: ондулятор, синхротронное излучение, фазовые ошибки.

Содержание

Введение	4
Движение электрона в ондуляторе	4
Излучение электрона в ондуляторе	5
Фазовые ошибки	10
Численное моделирование	10
Вывод	13
Литература	14

1.Введение

Магнитную систему знакопеременным периодическим полем $B_y = B_0 \cos{(k_w z)}$ называют ондулятором. Так же применяется термин вигглер. Разница между двумя этими терминами заключается в том, что вигглер используется для создания непрерывного спектра на больших энергиях фотонов, а ондулятор для резонансных гармоник, спектральный поток на которых пропорционален количеству периодов. Синхротронное излучение используется в широком ряде методик, использующих рентгеновское излучение, таких как: монокристальная и порошковая дифракция, фотоэлектронная спектроскопия, XAS-спектроскопия и д.р..

2. Движение электрона в ондуляторе

Рассмотрим движение электрона в синусоидальном магнитном поле, ось z направлена вдоль движения электрона, сам электрон имеет ультрарелятивистскую скорость. В ондуляторе магнитное поле перпендикулярно оси z, выберем такую систему координат, чтобы магнитное поле имело только y-компоненту.

Так как сила магнитного поля на движущийся заряд направлена перпендикулярно скорости и не изменяет скорость по модулю

Мы можем записать силу как

$$\frac{dp}{dt} = \gamma m_e a_\perp$$

Где γ — гамма фактор, m_e — масса покоя электрона, a_{\perp} - перпендикулярное ускорение.

Сама сила определяется как

$$F = -\frac{e}{c}[v \times B]$$

Как отмечалось выше у поля В есть только у компонента

$$B_{y} = B_{0} \cos \left(k_{w} z\right)$$

Откуда получаем

$$\frac{d^2x}{dt^2} = -\frac{eB_0}{\gamma m_e c} \cdot \frac{dz}{dt} \cdot \cos\left(k_w z\right)$$

$$\frac{d^2z}{dt^2} = \frac{eB_0}{\gamma m_e c} \cdot \frac{dx}{dt} \cdot \cos(k_w z)$$

Интегрируя первое, получим уравнение

$$\frac{dx}{dt} = -\frac{eB_0}{\gamma m_e c k_w} \sin\left(k_w z\right)$$

Подставим его во второе

$$\frac{d^2z}{dt^2} = -\left(\frac{eB_0}{\gamma m_e c}\right)^2 \cdot \frac{1}{k_w} \cdot \cos\left(k_w z\right) \sin\left(k_w z\right)$$

Введем коэффициент ондуляторности $K=\frac{eB_0\lambda}{m_ec^22\pi}$, где λ — длинна двух магнитов, тогда $k_w=\frac{2\pi}{\lambda}$

Будем считать, что $\frac{dz}{dt}\gg \frac{dx}{dt}$, тогда $\mathbf{z}\approx |v|t=\beta ct$ и

$$\frac{dx}{dt} = -\frac{Kc}{\gamma}\sin\left(k_w z\right)$$

$$\frac{dz}{dt} = C - \frac{K^2 c}{2\gamma^2 \beta} \sin^2(k_w z)$$

При

$$B_0 = 0$$

$$\frac{dz}{dt} = \beta c$$

отсюда находим константу $C = \beta c$. Проинтегрируем еще раз

$$x = \frac{K}{\gamma k_w \beta} \cos \left(k_w \overline{\beta} ct\right)$$

$$z = \beta c - \frac{K^{2c}}{2\gamma^2 \beta} \left(\frac{t}{2} - \frac{\sin(2k_w z)}{4k_w \beta c}\right) = \overline{\beta} c + \frac{K^2}{8\gamma^2 \beta^2 ck_w} \sin \left(2k_w \overline{\beta} ct\right) (1)$$
 Где $\overline{\beta} = \beta c \left(1 - \frac{K^2}{4\gamma^2 \beta^2 c^2}\right)$

3.Излучение ондулятора в параксиальном приближении

Плотность и поток для точечного заряда:

$$\rho(r,t) = -e\delta(\mathbf{r} - \mathbf{r}'(t))$$

$$\mathbf{j}(r,t) = -e\mathbf{v}(t)\delta(\mathbf{r} - \mathbf{r}'(t))$$

Запишем уравнения Максвелла в вакууме

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{j}$$
$$\nabla \mathbf{E} = 4\pi\rho$$

Также воспользуемся равенством для произвольного векторного поля Е

$$\nabla \times (\nabla \times E) = \nabla(\nabla E) - \Delta E$$

Из уравнений Максвелла сразу следует, что

$$c^2\nabla\times(\nabla\times\textbf{\textit{E}}) = c^2\left(\nabla\times\left(-\frac{1}{c}\frac{\partial\textbf{\textit{B}}}{\partial t}\right)\right) = -c^2\frac{\partial}{\partial t}\left(\frac{1}{c^2}\left(\frac{\partial\textbf{\textit{E}}}{\partial t} + 4\pi\textbf{\textit{j}}\right)\right) = = -\frac{\partial^2\textbf{\textit{E}}}{\partial t^2} - 4\pi\frac{\partial\textbf{\textit{j}}}{\partial t}$$

С другой стороны

$$\nabla(\nabla \mathbf{E}) - \Delta \mathbf{E} = 4\pi \nabla \rho - \Delta \mathbf{E}$$

Объединяя оба равенства, получим

$$-\frac{\partial^2 \mathbf{E}}{\partial t^2} - 4\pi \frac{\partial \mathbf{j}}{\partial t} = 4\pi c^2 \nabla \rho - c^2 \Delta \mathbf{E}$$

$$c^{2}\Delta\mathbf{E} - \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = 4\pi c^{2}\nabla\rho + 4\pi \frac{\partial\mathbf{j}}{\partial t} \qquad (2)$$

Дальше мы будем использовать обратное преобразование Фурье и свойства преобразования функции с преобразованием ее производной

$$F_{-}[E](\omega) = \int_{-\infty}^{+\infty} E(t)e^{i\omega t}dt$$

$$F_{-}\left[\frac{\partial^{\alpha} E}{\partial x^{\alpha}}\right](p) = (-ip)^{|\alpha|} F_{-}[E](p)$$

При этом введем обозначение

$$\overline{f}(\omega) = F_{-}[f(t)](\omega)$$

Беря обратное преобразование Фурье от равенства (2) приходим к следующему уравнению

$$c^2 \Delta \overline{\mathbf{E}} + \omega^2 \overline{\mathbf{E}} = 4\pi c^2 \nabla \overline{\rho} - 4\pi i \omega \overline{\mathbf{j}}$$
 (3)

Введем замену, полезную при малом изменении \tilde{E} от z сравнительно с $\frac{2\pi c}{\omega}$, так, что

$$\overline{\boldsymbol{E}} = \widetilde{\boldsymbol{E}} e^{\frac{i\omega z}{c}}$$

 \overline{E} здесь представляется произведением слабо меняющейся от z функции \widetilde{E} и сильно меняющейся $e^{\frac{i\omega z}{c}}$. После замены обратим внимание на слагаемое $\Delta \overline{E}$

$$\Delta\left(\widetilde{\boldsymbol{E}}e^{\frac{i\omega\boldsymbol{z}}{c}}\right) = \left(\Delta\widetilde{\boldsymbol{E}}\right)e^{\frac{i\omega\boldsymbol{z}}{c}} + \widetilde{\boldsymbol{E}}\left(\Delta e^{\frac{i\omega\boldsymbol{z}}{c}}\right) + 2\frac{\partial\widetilde{\boldsymbol{E}}}{\partial\boldsymbol{z}} \cdot \frac{\partial}{\partial\boldsymbol{z}}\left(e^{\frac{i\omega\boldsymbol{z}}{c}}\right) = \left(\Delta\widetilde{\boldsymbol{E}}\right)e^{\frac{i\omega\boldsymbol{z}}{c}} - \frac{\omega^2}{c^2}\widetilde{\boldsymbol{E}}e^{\frac{i\omega\boldsymbol{z}}{c}} + \frac{2\omega i}{c} \cdot \frac{\partial\widetilde{\boldsymbol{E}}}{\partial\boldsymbol{z}} \cdot e^{\frac{i\omega\boldsymbol{z}}{c}}$$

Тогда уравнение (3) переписывается в виде

$$c^{2}e^{\frac{i\omega z}{c}}\left(\Delta + \frac{2\omega i}{c} \cdot \frac{\partial}{\partial z}\right)\tilde{\mathbf{E}} = 4\pi c^{2}\nabla\overline{\rho} - 4\pi i\omega\overline{\mathbf{j}}$$
 (4)

Найдем преобразование Фурье для потока и плотности

$$\rho(\mathbf{r},t) = -e\delta(\mathbf{r} - \mathbf{r}'(t))$$

Пользуясь свойствами δ -функции, перепишем плотность

$$\varphi(x') = 0, \varphi'(x') \neq 0, \delta(\varphi(x)) = \sum_{i} \frac{\delta(x - x'_i)}{|\varphi'(x'_i)|}$$

Так как $v_z(z)$ не зануляется, то z однозначно определяет время нахождения частицы в точке, тогда сумма состоит из одного слагаемого

$$\delta(\boldsymbol{r} - \boldsymbol{r}'(t)) = \frac{\delta(t - t'(z))}{v_z(z)}$$

$$\delta(\boldsymbol{r} - \boldsymbol{r}'(t)) = \delta(z - z'(t)) \cdot \delta(x - x'(t)) \cdot \delta(y - y'(t)) = \delta(z - z'(t)) \cdot \delta(\boldsymbol{r}_{\perp} - \boldsymbol{r}'_{\perp}(t))$$

$$\rho(\boldsymbol{r}, t) = -e\delta(\boldsymbol{r} - \boldsymbol{r}'(t)) = -e\delta(z - z'(t)) \cdot \delta(\boldsymbol{r}_{\perp} - \boldsymbol{r}'_{\perp}(t)) = -e\delta(\boldsymbol{r}_{\perp} - \boldsymbol{r}'_{\perp}(t)) \cdot \frac{\delta(t - t'(z))}{v_z(z)}$$

$$\rho(z, \boldsymbol{r}_{\perp}, t) = -e\delta(\boldsymbol{r}_{\perp} - \boldsymbol{r}'_{\perp}(t)) \cdot \frac{\delta(t - t'(z))}{v_z(z)}$$

Точно так же с потоком

$$j(z, \mathbf{r}_{\perp}, t) = -ev(z)\delta\left(\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}(t)\right) \cdot \frac{\delta\left(t - t'(z)\right)}{v_z(z)}$$

В слабом магнитном поле модуль скорости меняется слабо и можно считать |v|=v-const

Тогда введем понятие пройденного пути как

$$s = vt(z)$$

Из свойства δ -функции

$$\int_a^b \delta(t-t') \varphi(t) dt = \varphi(t')$$
, при a

Тогда Преобразование Фурье от плотности будет

$$F_{-}[\rho](\omega) = \int_{-\infty}^{+\infty} \left(-e\delta \left(\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}(z) \right) \cdot \frac{\delta \left(t - t'(z) \right)}{v_{z}(z)} \right) e^{i\omega t} dt =$$

$$= -\frac{e\delta \left(\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}(z) \right)}{v_{z}(z)} \int_{-\infty}^{+\infty} \delta \left(t - t'(z) \right) e^{i\omega t} dt = -\frac{e\delta \left(\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}(z) \right)}{v_{z}(z)} e^{i\omega t'}$$

$$\overline{\rho}(\mathbf{r}_{\perp}, z, \omega) = -\frac{e\delta \left(\mathbf{r}_{\perp} - \mathbf{r}'_{\perp}(z) \right)}{v_{z}(z)} e^{i\omega \frac{S}{v}(z)}$$

Аналогично с потоком

$$\bar{j}(\mathbf{r}_{\perp}, z, \omega) = -\frac{e\delta\left(\mathbf{r}_{\perp} - \mathbf{r}_{\perp}'(z)\right)}{v_{z}(z)}v(z)e^{i\omega\frac{S}{v}(z)}$$

Так как \tilde{E} слабо меняется от z, то вторая производная по z много меньше первой и, подставляя преобразования Фурье и выделяя компоненты x y, получим из (3)

$$\begin{split} e^{\frac{i\omega z}{c}} \left(\Delta_{\perp} + \frac{2\omega i}{c} \cdot \frac{\partial}{\partial z} \right) \, \widetilde{\pmb{E}}_{\perp} &= -\frac{4\pi e}{v_z(z)} \bigg(\nabla \delta \left(\pmb{r}_{\perp} - \pmb{r}_{\perp}'(z) \right) - \frac{i\omega}{c^2} \delta \left(\pmb{r}_{\perp} - \pmb{r}_{\perp}'(z) \right) \pmb{v}_{\perp}(z) \bigg) e^{i\omega \frac{S}{v}(z)} \\ \left(\Delta_{\perp} + \frac{2\omega i}{c} \cdot \frac{\partial}{\partial z} \right) \, \widetilde{\pmb{E}}_{\perp} &= \frac{4\pi e}{v_z(z)} \bigg(\frac{i\omega}{c^2} \delta \left(\pmb{r}_{\perp} - \pmb{r}_{\perp}'(z) \right) \pmb{v}_{\perp}(z) - \nabla_{\perp} \delta \left(\pmb{r}_{\perp} - \pmb{r}_{\perp}'(z) \right) \bigg) e^{i\omega \left(\frac{S(z) - z}{v - c} \right)} \end{split}$$

Здесь пренебрегается элемент с $\frac{v_z'(z)}{v_z^2(z)}$, далее мы будем пренебрегать разностью между $v_z(z)$ и с и перепишем предыдущее уравнение в виде

$$\left(\Delta_{\perp} + \frac{2\omega i}{c} \cdot \frac{\partial}{\partial z}\right) \widetilde{\boldsymbol{E}}_{\perp} = \frac{4\pi e}{c} \left(\frac{i\omega}{c^2} \delta\left(\boldsymbol{r}_{\perp} - \boldsymbol{r}_{\perp}'(z)\right) \boldsymbol{v}_{\perp}(z) - \nabla_{\perp} \delta\left(\boldsymbol{r}_{\perp} - \boldsymbol{r}_{\perp}'(z)\right)\right) e^{i\omega\left(\frac{s(z)}{v} - \frac{z}{c}\right)}$$

Воспользуемся функцией Грина, удовлетворяющей уравнение

$$\left(\Delta_{\perp} + \frac{2\omega i}{c} \cdot \frac{\partial}{\partial z}\right) G(z_o - z, r_{\perp o} - r_{\perp}) = \delta(\mathbf{r}_{\perp o} - \mathbf{r}_{\perp}) \delta(z_o - z)$$

$$G(z_o - z, \mathbf{r}_{\perp o} - \mathbf{r}_{\perp}) = -\frac{1}{4\pi(z_o - z')} \cdot e^{i\omega \frac{|\mathbf{r}_{\perp o} - \mathbf{r}_{\perp}'|^2}{2c(z_o - z')}}$$

Индексом о обозначаются координаты наблюдателя

Решение может быть представлено в виде

$$\tilde{E}_{\perp}(z_o, \boldsymbol{r}_{\perp o}, \omega) =$$

$$= -\frac{e}{c} \int_{-\infty}^{+\infty} dz' \frac{1}{z_o - z'} \int dr'_{\perp} \left(\frac{i\omega}{c^2} \delta \left(\mathbf{r}'_{\perp} - \mathbf{r}'_{\perp}(z) \right) \mathbf{v}_{\perp}(z') - \nabla'_{\perp} \delta \left(\mathbf{r}'_{\perp} - \mathbf{r}'_{\perp}(z') \right) \right) e^{i\omega \left(\frac{\left| \mathbf{r}_{\perp o} - \mathbf{r}'_{\perp} \right|^2}{2c(z_o - z')} + \left(\frac{s(z')}{v} - \frac{z'}{c} \right) \right)}$$

Витоге

$$\tilde{E}_{\perp}(z_o, \boldsymbol{r}_{\perp \boldsymbol{o}}, \omega) = -\frac{i\omega e}{c^2} \int_{-\infty}^{+\infty} dz' \frac{e^{i\phi_T}}{z_o - z'} \left(\left(\frac{v_x(z')}{c} - \frac{x_o - x'(z')}{z_o - z'} \right) \hat{x} + \left(\frac{v_y(z')}{c} - \frac{y_o - y'(z')}{z_o - z'} \right) \hat{y} \right) (5)$$

$$\Gamma$$
де $\phi_T = \omega \left(\frac{s(z')}{v} - \frac{z'}{c} \right) + \omega \left(\frac{\left(x_o - x'(z') \right)^2 + \left(y_o - y'(z') \right)^2}{2c(z_o - z')} \right)$, \hat{x} и \hat{y} — единичные вектора

Т.к. координата наблюдателя z_0 много больше z любой точки ондулятора, пренебрежем в разложении $\frac{1}{z_o-z'}$ всеми элементами, кроме $\frac{1}{z_o}$, также введем обозначения $\theta_x=\frac{x_0}{z_o},\,\theta_y=\frac{y_o}{z_o}$

$$\begin{split} \tilde{E}_{\perp}(z_{o}, \pmb{r}_{\perp \pmb{o}}, \omega) &= -\frac{i\omega e}{z_{o}c^{2}} \int_{-\infty}^{+\infty} dz' e^{i\phi_{T}} \left(\left(\frac{v_{x}(z')}{c} - \theta_{x} \right) \widehat{\pmb{x}} + \left(\frac{v_{y}(z')}{c} - \theta_{y} \right) \widehat{\pmb{y}} \right) \\ \phi_{T} &= \omega \left(\frac{s(z')}{v} - \frac{z'}{c} \right) + \frac{\omega}{2c} \left(z_{o} \left(\theta_{x}^{2} + \theta_{y}^{2} \right) - 2x' \theta_{x} - 2y' \theta_{y} + z' \left(\theta_{x}^{2} + \theta_{y}^{2} \right) \right) \end{split}$$

Здесь учитывалось приближение

$$\frac{\left(x_{o}-x'(z')\right)^{2}+\left(y_{o}-y'(z')\right)^{2}}{\left(z_{o}-z'\right)}\approx\left(x_{o}^{2}+y_{o}^{2}-2x'x_{o}-2y'y_{o}+x'^{2}+y'^{2}\right)\cdot\left(\frac{1}{z_{o}}+\frac{z'}{z_{o}^{2}}\right)\approx\\\approx z_{o}\left(\theta_{x}^{2}+\theta_{y}^{2}\right)-2x'\theta_{x}-2y'\theta_{y}+z'\left(\theta_{x}^{2}+\theta_{y}^{2}\right)$$

Теперь объединим выводы (1) и (5)

$$\tilde{E}_{\perp}(z_{o}, \boldsymbol{r}_{\perp o}, \omega) = \frac{i\omega e}{z_{o}c^{2}} \int_{-\frac{\lambda N}{2}}^{+\frac{\lambda N}{2}} dz' e^{i\phi_{T}} \left(\left(\frac{K}{\gamma} \sin(k_{w}z) \right) \hat{\boldsymbol{x}} + \boldsymbol{\theta} \right)$$
(6)
$$\phi_{T} = \omega \left(\frac{s(z')}{v} - \frac{z'}{c} \right) + \frac{\omega}{2c} \left(z_{o} (\theta_{x}^{2} + \theta_{y}^{2}) - 2x' \theta_{x} - 2y' \theta_{y} + z' (\theta_{x}^{2} + \theta_{y}^{2}) \right) =$$

$$= \omega \left(\frac{s(z')}{v} \right) + \frac{\omega z_{o}\theta^{2}}{2c} - \frac{\theta_{x}\omega K}{\gamma k_{w}\beta c} \cos(k_{w}z') + \left(\frac{\omega\theta^{2}}{2c} \right) z' - \frac{\omega}{c} \left(\overline{\beta}c + \frac{K^{2}}{8\gamma^{2}\beta^{2}ck_{w}} \sin(2k_{w}z') \right) =$$

$$= \left(\frac{\omega}{2c\overline{v}^{2}} + \frac{\omega\theta^{2}}{2c} \right) z' - \frac{K\theta_{x}}{\gamma} \frac{\omega}{k_{w}c} \sin(2k_{w}z') - \frac{K\theta_{x}}{\gamma} \frac{\omega}{k_{w}c} \cos(k_{w}z')$$

Тут использовалось приближение $\beta \approx 1, \overline{\gamma} = \frac{\gamma}{\sqrt{1 + \frac{K^2}{2}}},$ перепишем (6) с использованием формулы Якоби-Янгера

$$e^{izcos(\theta)} = \sum_{n=-\infty}^{+\infty} i^n J_n(z) e^{(in\theta)}$$
$$e^{izsin(\theta)} = \sum_{n=-\infty}^{+\infty} J_n(z) e^{(in\theta)}$$

Где $J_n(z)$ – функция Бесселя первого рода n-го порядка

И замены
$$\omega=\omega_r+\Delta\omega$$
, $\omega_r=2c\overline{\gamma}^2k_w$, $C=\frac{k_w\Delta\omega}{\omega_r}$

$$\begin{split} \tilde{E}_{\perp}(z_o, \pmb{r}_{\perp \pmb{o}}, \omega) &= e^{\left(i\frac{\omega z_o\theta^2}{2c}\right)} \frac{i\omega e}{z_oc^2} \sum_{m,n=-\infty}^{+\infty} J_n(u) J_m(v) e^{\left(\frac{i\pi n}{2}\right)} \int_{-\frac{\lambda N}{2}}^{+\frac{\lambda N}{2}} dz' e^{i\left(c + \frac{\omega\theta^2}{2c}\right)z'} \cdot \\ &\cdot \left(\frac{K}{2i\gamma} (e^{2ik_wz'} - 1)\hat{x} + \theta e^{ik_wz'}\right) e^{i(n+2m)k_wz'} \end{split}$$

$$\Gamma$$
де $u=-rac{K^2\omega}{8\gamma^2k_wc}$, $v=-rac{K heta_x\omega}{\gamma k_wc}$

Если $C + \frac{\omega \theta^2}{2c} \ll k_w$, то первая фаза меняется медленно относительно периода ондулятора λ . Такое неравенство справедливо при большом N. Теперь рассмотрим условия резонанса $C \ll k_w$ и $\frac{\omega \theta^2}{2c} \ll k_w$

$$\widetilde{\boldsymbol{E}}_{\perp}(z_o, \boldsymbol{r}_{\perp \boldsymbol{o}}, \omega) = \frac{\omega e K}{2c^2 z_o \gamma} e^{i\frac{\omega z_o \theta^2}{2c}} (J_1(v) - J_0(v)) \widehat{\boldsymbol{x}} \cdot \int_{-\frac{\lambda N}{2}}^{+\frac{\lambda N}{2}} e^{i\left(c + \frac{\omega \theta^2}{2c}\right)z'} dz'$$

$$\widetilde{\boldsymbol{E}}_{\perp}(z_o, \boldsymbol{r}_{\perp o}, \omega) = \frac{\omega e K L}{2c^2 z_o \gamma} e^{i\frac{\omega z_o \theta^2}{2c}} (J_1(v) - J_0(v)) \operatorname{sinc}\left(\frac{L}{2} \left(C + \frac{\omega \theta^2}{2c}\right)\right) \widehat{\boldsymbol{x}}$$

4.Фазовые ошибки

Главный эффект ошибок поля на излучение ондулятора оказывают ошибки в фазовой части формулы излучения, они могут значительно уменьшить спектр излучения. Фазовые ошибки можно разделить на систематические, изменяющиеся постепенно по длине устройства из-за щелей между магнитами или из-за изменения какого-то параметра и случайные, возникающие из-за ошибок поля в небольшом пространстве, зависящих от конкретного магнита.

Систематическую ошибку, связанную с щелями между магнитами, можно вычислить, однако случайная ошибка играет значительно большую роль.

5. Численное моделирование

В этой работе использовалась программа SPECTRA версии 10.2 для численного моделирования. Расчет делается для станции 1-1 ЦКП "СКИФ".

Ниже приведен график распределения плотности потока фотонов от энергии. Как видим при увеличении энергии количество фотонов уменьшается. Причем наибольшее значение имеют нечетные гармоники. Значения плотности потока приводятся в ph/s/mm²/0.1% BW. Спектральная ширина определяется через 0.1%BW, для примера спектральная ширина на энергии 1000 эВ составляет 0.1эВ. Энергия дана в электронвольтах. Расчеты проводились для угла $\theta=0$, энергии электронов 3эВ, на расстоянии от источника 25 м, для энергии фотонов от 1 до 20000эВ, с амплитудой магнитного поля 1.1 T, с периодом 1.55 см, с длинной ондулятора 60 см.

Рис.1

Рассмотрим зависимость потока от фазовых ошибок. На рис.2 графики черный — без фазовой ошибки, красный — с фазовой ошибкой 3 градуса и синий — с фазовой ошибкой 6 градусов.

То же самое, только в логарифмическом масштабе

Не трудно заметить, что чем дальше по счету гармоника, тем большее влияние имеют фазовые ошибки.

Далее рассмотрим характеристики реального ондулятора со станции 1-1. Её поле было измерено датчиком Холла и мы можем сравнить его с синусоидальным полем. На рис.3 черным графиком изображено излучение ондулятора с синусоидальным полем, красным -реального.

Рис.4
То же самое в логарифмическом масштабе

Рис.5

Дальше рассмотрим на рис.6, какие случайные ошибки имеет поле (в градусах) в зависимости от конкретного магнита

Как видно из графика, случайные ошибки действительно влияют на поле значительно сильнее, чем систематические, которые здесь трудно проследить.

6.Вывод

В работе было рассмотрено излучение и движение релятивистских пучков в синусоидальном магнитном поле. Так же было изучено влияние фазовых

ошибок на излучение. Был проведён сравнительный анализ спектральной характеристики излучения из идеального синусоидального поля и реально измеренного поля ондулятора станции 1-1.

7.Литература

- [1] Gianluca Geloni, Evgeni Saldin, Evgrni Schneidmiller, Mikhail Yurkov, Deutsches Elektronen-Synchrotron DESY, Hamburg, Paraxial Green's functions in Synchrotron Radiation theory, February 2005.
- [2] Gianluca Geloni, European XFEL GmbH, Hamburg, Vitali Kocharyan and Evgeni Saldin, Deutsches Elektronen-Synchrotron DESY, Hamburg, Brightness of Synchrotron radiation from Undulators and Bending Magnets, July 2014.\
- [3] Helmut Widemann, Particle Accelerator Physics Furth Edition, 2015.
- [4] Е.А. Переведенцев, Радиационные эффекты в циклических ускорителях, 18 декабря 2013г.
- [5] Н.А. Винокуров, Е.Б. Левичев, Ондуляторы и вигглеры для генерации излучения и других применений, Успехи физических наук том 185, №9, Сентябрь 2015г.
- [6] Richard P. Walker, Diamond Light Source, Oxfordshire, Unitet Kingdom, Phase errors and their effect on undulator radiation properties, Physical review special topics accelerators and beams 16, 2013.