МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИС-СЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ».

Физический факультет

Кафедра общей физики

Новиков Алексей Андреевич

КУРСОВАЯ РАБОТА

Измерение кондактанса в микросужениях двумерных проводников

Электромагнитный практикум, 2 курс, группа №19302

Научный руководитель:

Оценка научного руководителя

__к.ф.-м.н. Д.А. Похабов_____

«____»____20__г.

Преподаватель практикума

Оценка преподавателя практикума

А.В. Никишин____

«____»____20__г.

Куратор практикума:

<u>к.т.н. В.Т. Астрелин</u> Итоговая оценка

«____»____20__г.

Новосибирск 2020

Аннотация

Целью данной работы является изучение и измерение кондактанса (величины обратной сопротивлению) в микросужениях (800 – 900 нм) в двумерном электронном газе в полупроводниковой гетеростуктуре (GaAs/AlGaAs).

Для этой цели была использована установка лаборатории № 24 «Неравновесных полупроводниковых систем» Института физики полупроводников им. А. В. Ржанова СО РАН. Установка представляет собой систему из синхронных детекторов с низкочастотным переменным током подключенных четырехзондовым способом к помещенному в сосуд с жидким гелием образцу, содержащему микросужение в двумерном электронном газе (ДЭГ). Микросужение оснащено затворами, контролирующими его ширину.

Измерена зависимость кондактанса от напряжения на затворах. Результаты показывают, что происходит квантование кондактанса. Это выглядит как плато на уровнях кратных $2e^2/h$. Наблюдалась «0,7 – аномалия» квантования известная из литературы [1, 2], но до сих пор не имеющая удовлетворительного объяснения. Измерена энергетическая щель между одномерными подзонами, формирующимися в результате размерного квантования.

Обнаруженное квантование кондактанса является одним из самых ярких проявлений эффектов размерного квантования в электронном транспорте в полупроводниковых наноструктурах.

Ключевые слова: Кондактанс микросужений двумерных проводников, синхронное детектирование, Двумерный электронный газ.

1. Введение	3
2. Теория	3
2.1 Техника низкотемпературного эксперимента	4
2.2 Синхронное детектирование малых сигналов на переменном возбуждаю- щем сигнале	. 4
2.3 Двумерный электронный газ	5
2.4 Способы создания точечных контактов между двумя двумерными провод никами	ι- . 5
2.5 Эффекты размерного квантования и явление квантования кондактанса	6
3. Описание экспериментальной установки	7
3.1 Экспериментальный образец	. 7
3.2 Методика измерений	8
 Результаты эксперимента	10 14
Список литературы 1	15

Оглавление

1. Введение

Данная работа посвящена измерению кондактанса в микросужениях двумерных проводников. Результаты предыдущих исследований показывают, что кондактанс квантуется за счёт квантово-размерного эффекта. Впервые квантование было описано в 1988 году [3] и до сих пор исследуется, существуют некоторые аномалии, не имеющие удовлетворительного объяснения (как например «0,7 – аномалия»). Целью данной работы является наблюдение и описание квантования кондактанса микросужений в двумерном электронном газе (ДЭГ) в гетеропереходе между GaAs и AlGaAs. Для достижения данной цели потребовалось:

а) познакомиться с техникой низкотемпературного эксперимента; Для этого были изучены методы достижения низких температур [4].

б) изучить и освоить метод синхронного детектирования малых сигналов на переменном возбуждающем сигнале [5];

в) познакомиться со способами создания двумерного электронного газа (ДЭГ) в полупроводниковых гетероструктурах [6];

г) изучить способы создания полупроводниковых наноструктур на примере точечных контактов между двумя двумерными проводниками [7];

д) познакомиться с эффектами размерного квантования и явлением квантования кондактанса[6]

2. Теория

Кондактанс прямоугольной пленки проводника с шириной W и длиной L это

$$G = \sigma \frac{W}{L} \tag{1}$$

Проводимость σ не зависит от размеров проводника и определяется материалом проводника.

Данная формула справедлива для достаточно больших проводников, размеры которых много больше, чем:

1. Длина волны де Бройля

- 2. Длина свободного пробега
- 3. Длина релаксации импульса электрона

Если размеры проводника становятся сравнимыми с вышеперечисленными длинами, наблюдаются отклонения от формулы (1). В проводниках, достаточно больших по сравнению с атомными масштабами, но сравнимых с длиной волны де Бройля наблюдаются квантоворазмерные эффекты. Одним из проявлений этого эффекта является явление квантования кондактанса.

2.1 Техника низкотемпературного эксперимента

Чтобы получить изучаемые эффекты требуется охладить образец до температуры порядка кипения жидкого гелия. Явление квантования кондатанса напрямую связанно с эффектами размерного квантования которые можно наблюдать только при низких температурах схожего порядка, так как тепловая энергия электронов смазывает границы уровней и спектр энергий электронов становится непрерывным. Также это позволяет избежать тепловых шумов, которые неизбежно возникают при более высоких температурах и портят измерения.

2.2 Синхронное детектирование малых сигналов на переменном возбуждающем сигнале

Данный метод позволяет выделить сигнал на требуемой частоте (в данной работе это частота возбуждающего сигнала). Детектируемый сигнал $(U_m \cos(\omega_0 t + \varphi))$ умножается на опорный сигнал $(Acos(\omega_0 t))$:

$$A\cos(\omega_0 t)U_m\cos(\omega_0 t + \varphi) = \frac{AU_m}{2}\cos\varphi + \frac{AU_m}{2}\cos(2\omega_0 t + \varphi)$$

Правая часть сигнала отсеивается фильтром низких частот. Если фаза известна, то требуемый сигнал можно извлечь из получившегося.

Рисунок 1 (схема фильтра синхронного детектора)

Чтобы определить фазу, синхронный детектор проделывает с сигналом то же самое, только умножая на $Asin(\omega_0 t)$. В результате в одном окне синхронного детектора он показывает $U_m \cos \varphi$, а в другом $U_m \sin \varphi$. Сдвиги по фазе, как правило, связаны с реактивными сопротивлениями (ёмкостями и индуктивностями). Но поскольку частота низкая, то $\varphi \approx 0$, тогда $U_m \cos \varphi \approx U_m$, $U_m \sin \varphi \approx 0$.)

2.3 Двумерный электронный газ

ДЭГ возникает на границе раздела (в нашем случае) легированного n-Al-GaAs и нелегированного GaAs. Он образуется при низких температурах (порядка температуры кипения жидкого гелия). На границе двух металлов за счет разной работы выхода происходит перетекание электронов с AlGaAs на GaAs, за счет этого уравниваются энергия Ферми. В возникающей потенциальной яме зажато некоторое количество свободных электронов: С одной стороны их удерживает барьер, возникающий в гетеропереходе между AlGaAs и GaAs, благодаря разности работ выхода, а с другой поле, возникающее от положительных ионов донора (AlGaAS). При таких размерах уже наблюдается квантование их состояний в направлении, перпендикулярном гетерогранице.

Рисунок 2 (гетеропереход и зонные диаграммы до и после перераспределения заряда)

2.4 Способы создания точечных контактов между двумя двумерными проводниками

Квантовый точечный контакт (КТК) — это короткое и узкое сужение в ДЭГ, с шириной порядка длины волны Ферми и длиной много меньше длины свободного пробега электрона. Создать его можно 2 способами:

- С помощью литографии, в гетероструктуре вытравливаются узкие траншеи, которые отделяют области затворов от самого КТК.
- С помощью расщепленного металлического затвора, на поверхность образца напыляется узкая полоска металла с субмикронным разрывом. При приложении отрицательного напряжения под затворами происходит обеднение ДЭГ, в результате чего и формируется узкое микросужение.

Рисунок 3 (способы создания микросужения в ДЭГ)

2.5 Эффекты размерного квантования и явление квантования кондактанса

Внутри микросужения из-за эффектов размерного квантования возникают одномерные энергетические подзоны. При низких температурах уровни ниже уровня Ферми заполнены, выше – нет. Ток протекающий через сужение при приложении малого напряжения δV будет $\delta I = 2e^2/h \cdot N \cdot \delta V$, где N - число заполненных подзон размерного квантования [3]. Исходя из этого кондактанс равен $\delta I/\delta V = 2e^2/h \cdot N$, что означает, что он квантуется. Напряжение на затворах изменяет ширину микросужения, благодаря чему меняется структура уровней и тем самым число заполненных подзон.

Рисунок 4 (Схема уровней для целого квантования (Закон дисперсии электрона в одномерном проводнике))

2.6 Влияние дополнительного постоянного напряжения на эксперимент

При постоянном сдвиге может достичь ситуации, когда перепад напряжений соразмерен расстоянию между уровнями, в такой ситуации возникают полу-

Рисунок 5 (Схема уровней для полуцелого квантования (Закон дисперсии электрона в одномерном проводнике))

торные ступени (1.5, 2.5, ... – ступени) и «0,25-аномалия». Объясняется это тем что переменный потенциал захватывает разные уровни и тем самым создает в одну сторону $2Ne^2/h$, в другую $2(N + 1)e^2/h$, а усредненный $(2N + 1)e^2/h$. Это объясняет полуцелые плато.

3. Описание экспериментальной установки 3.1 Экспериментальный образец

В данной работе ДЭГ формируется в многослойной гетероструктуре, выращенной методом молекулярно-лучевой эпитаксии. Микросужение в ДЭГ изготовливается с помощью фото- и электронной литографии и уже описанного способа вытравливания траншей.

На образце созданы методом термической диффузии металла с поверхности (вжигание) 10 пронумерованных контактов:

1, 6 – для подключения источника напряжения

(2,10) (5,7) – для снятия напряжения непосредственно на самом микросужении

(3,4) (8,9) – для подключения затворов к ЦАПам

Рисунок 6 (Схема экспериментального образца)

Некоторые контакты дублируют друг друга (например, 3 и 4). Число контактов превышает необходимое для измерений, поэтому некоторые контакты в эксперименте не использовались.

Далее образец распаивается на зонд, который во время эксперимента погружается в жидкий гелии чтобы достичь желаемых температур.

3.2 Методика измерений

Рисунок 7 (Блок-схема экспериментальной установки)

К зонду подключены следующие устройства:

- 1. 2 ЦАПа для подачи напряжения на затворы (№0, 1).
- 2. Синхронный детектор, который подает опорный сигнал и измеряет протекающий через структуру ток.
- 3. Синхронный детектор, который измеряет напряжение.
- 4. ЦАП, подающий постоянное напряжение смещения (№2).

Синхронный детектор, подающий опорный сигнал, и ЦАП напряжения смещения подключены через делитель (Синхронный детектор через левый вход, ЦАП через правый):

Рисунок 8 (Схема делителя)

4. Результаты эксперимента

Всего было проведено 3 измерения при нулевом напряжении смещения и серия измерений при различных постоянных смещениях напряжения в диапазоне от (-9 мВ) до (+ 9 мВ) с шагом 0,3 мВ.

4.1 (Без смещения по напряжению, интервал напряжения затвора от -6,5 В до - 5,0 В)

Рисунок 9 (Зависимость кондактанса от затворных напряжений в диапазоне значений от –6,5 В до –5 В.)

На графике четко заметны первые 2 ступени и «0,7- аномалия». Исходя из теории первая ступень должна находится на высоте $77,5 * 10^6$ 1/Ом. Реально же она находится на высоте $66 * 10^6$ 1/Ом, а вторая ступень на высоте $127 * 10^6$ 1/Ом. Эта разница объясняется тем, что помимо сопротивления самого микро-сужения учитывается так же сопротивление самой структуры на пути к контактам.

4.2 (Без смещения по напряжению, интервал напряжения затвора от -6,5 В до - 4,5 В)

Рисунок 10 (Зависимость кондактанса от затворных напряжений в диапазоне значений от –6,5 В до –4,5 В.)

На графике заметны 3 полноценных ступени, едва различима 4.

Рисунок 11 (Зависимость кондактанса от затворных напряжений в диапазоне значений от -6,5 В до -5 В и от смещения напряжения в диапазоне от -9 до 9 мВ)

Рисунок 12 (График производной кондактанса по напряжению затвора)

На графиках четко видны характерные ступени. Также по нему можно качественно определить ширину межподзонной щели, это исходя из теории расстояние в мВ между осями на которых лежат целые и полуцелые плато. Ширина между зонами составляет ≈7,5 мэВ[8].

5. Выводы

Выполнение данной работы позволило познакомиться с низкотемпературным экспериментом, полупроводниковыми наноструктурами и электрофизическими измерениями малых сигналов. В результате проведённых измерений удалось пронаблюдать явление квантования кондактанса, природа которого связана с эффектом размерного квантования. Помимо «классических» плато квантования при значениях, кратных 2e2/h, в эксперименте наблюдалось необычное плато при значении 0,7×2e2/h, известное из литературы, как «0,7–аномалия» квантования. Измерения кондактанса как функции напряжений на затворах, а также напряжения между истоком и стоком, позволили определить расстояние между энергетическими подзонами, дающее полезную информацию о структуре одномерных подзон в микросужении.

Список литературы

[1]K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, D.A. Ritchie. Possible Spin Polarization in a One-Dimensional Electron Gas. // Physical Review Letters. – 1996. – Vol.77, №1. – PP.135–138.

[2]A. P. Micolich. What lurks below the last plateau: experimental studies of the $0.7 \times 2e^2/h$ conductance anomaly in one-dimensional systems. // Journal of Physics - Condensed Matter. - 2011. - Vol.23, No.44. - P.443201.

[3] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
[4] Эдельман В. С. Э 19 Вблизи абсолютного нуля. — М.: Наука. Главная редакция физико-математической литературы, 1983. — 176 с. (Библиотечка «Квант», Вып. 2 6).

[5] Качанов В.К., Методы обработки сигналов в ультразвуковой дефектоскопии: учебное пособие для студентов вузов / В.К. Качанов, В.Г. Карташёв, И.В. Соколов, Е.В. Шалимова. - М. : Издательский дом МЭИ, 2010. - 220 с. - ISBN 978-5-383-00521-7

[6] А. Г. Погосов, Кинетические явления в твердотельных электронных биллиардах, докторская диссертация, 2006.

[7]Д. А. Похабов, Квантовый транспорт в микросужениях и подвешенных квантовых точечных контактах на основе гетероструктур GaAs/AlGaAs, кандидатская диссертация, 2018.

[8] D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. A. Shevyrin, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 112, 082102 (2018).