МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ».

Физический факультет

Кафедра общей физики

Белосохов Александр Максимович

КУРСОВАЯ РАБОТА

Измерение постоянной Холла и подвижности носителей заряда в полупроводнике

Электромагнитный практикум, 2 курс, группа №19311

Научный руководитель:

<u>к.ф.-м.н. А. А. Симонов</u> Оценка научного руководителя

«____»____20_г.

Преподаватель практикума

<u>к.ф.-м.н. С. В. Мурахтин</u> Оценка преподавателя практикума

«	»	20	Г.

Куратор практикума:

<u>к.т.н. В.Т. Астрелин</u> Итоговая оценка

«____»____20___г.

Новосибирск 2020

Оглавление

Введение	4
Движение носителей заряда в полупроводнике	5
Экспериментальная установка	10
Методика измерений	11
Заключение	12
Список литературы	13

Аннотация

Целью данной работы являлось определение материала исследуемого полупроводника и типа его проводимости. Для этого была собрана схема, включающая в себя электромагнит для воздействия магнитного поля на образец и возникновения в нем эффекта Холла, источник постоянного напряжения и многофункциональную плату сбора данных National Instruments NI6010 для вывода осциллограмм на экран компьютера и их обработки средствами программного комплекса LabView. Были получены зависимости ЭДС Холла от напряжения в электрической цепи при различных положениях образца в электромагните и различных значениях магнитного поля. На их основании построен график зависимости ЭДС Холла от силы тока в цепи, определены материал образца, тип его проводимости и подвижность носителей заряда в нем.

Ключевые слова: эффект Холла, электромагнит, подвижность носителей заряда, тип проводимости полупроводника.

Введение

Эффект Холла – явление возникновения в проводнике под действием электрического и магнитного полей дополнительного электрического поля, основанное на движении заряженных частиц в проводнике под действием силы Лоренца. Это явление позволяет оценить их концентрацию и подвижность, а также проследить чёткую зависимость между силой тока, внешним магнитным полем и поведением носителей заряда в материале, поэтому его используют для определения электромагнитных свойств и молекулярной структуры различных проводящих материалов. На основе этого эффекта создаются датчики Холла для обнаружения и измерения магнитных полей. В ходе этой работы была поставлена задача определить материал и тип проводимости неизвестного полупроводника с помощью эффекта Холла.

Движение носителей заряда в полупроводнике

Рассмотрим однородный изотропный полупроводник в форме параллелепипеда (рис. 2).

Рис. 1. Движение носителей заряда в полупроводнике

В отсутствие магнитного поля, если образец однороден и изотропен, контакты 3 и 4 находятся на эквипотенциальной поверхности и при пропускании тока через образец, падение напряжения между контактами 3 и 4 равно нулю. Поместим наш образец в однородное магнитное поле, вектор магнитного поля \vec{B} перпендикулярен вектору \vec{j} . Скорость движения заряженных частиц состоит из хаотической (тепловой) и дрейфовой составляющих. Дрейфовая скорость возникает вследствие действия на заряженную частицу внешних сил (в нашем случае из-за приложенных внешних электрического и магнитного полей \vec{E} и \vec{B}). В силу линейности зависимости силы Лоренца от скорости имеем:

$$\vec{F} = q\vec{E} + \frac{q}{c}[\vec{v_T} \times \vec{B}] + \frac{q}{c}[\vec{v_d} \times \vec{B}].$$

Так как средняя проекция тепловой скорости на любую ось равна нулю, то при усреднении второе слагаемое в последней формуле становится равным нулю, и средняя сила зависит только от дрейфовой скорости. Видно, что магнитная составляющая силы Лоренца отклоняет как положительно, так и отрицательно заряженные частицы в одну и ту же сторону, поскольку изменение знака заряда компенсируется изменением направления дрейфовой скорости на противоположную.

Предположим, что ток в образце определяется движением заряженных частиц одного типа, например, электронов (иначе придётся учитывать вклад в ток движение заряженных частиц всех типов). В отсутствие магнитного поля ток течёт слева направо. После включения магнитного поля, на электроны начинает действовать магнитная составляющая силы Лоренца, которая отклоняет их в направлении к грани 3. Таким образом, некоторое время после включения магнитного поля происходит движение электронов от грани 4 к грани 3. Электроны, создают на грани 3 отрицательный, а на грани 4 положительный есть между этими гранями заряды, то возникнет дополнительное электрическое поле $\overrightarrow{E_H}$. Заряд на гранях 3 и 4 будет расти до тех пор, пока магнитная составляющая силы Лоренца не уравновесится этим дополнительным электрическим полем:

$$e \cdot \overrightarrow{E_y} + \frac{e}{c} [\overrightarrow{v_d} \times \overrightarrow{B}] = 0.$$

В этой ситуации имеем: $E_y = \frac{v_d}{c}B$. Так как мы рассматриваем движение электрона за время свободного пробега, то ясно, что в формуле стоит средняя скорость дрейфа, определяемая средним по ансамблю электронов временем свободного пробега $\langle \tau \rangle$ (средним временем релаксации). Поскольку $j_x = -env_d$, то $E_y = E_H = -\frac{j_x B}{en}$.

Величина E_H называется полем Холла. Таким образом, электрическое поле (для нашей ориентации векторов) имеет компоненты E_x и E_y , следовательно, полный вектор электрического поля $\vec{E} = \vec{\iota}E_x + \vec{k}E_y$ не будет совпадать по величине и направлению с первоначальным, (когда $\vec{B} = 0$) между ними будет угол ϕ_H , получивший название угол Холла. Для тангенса этого угла можно записать: $tg(\phi_H) = \frac{E_y}{E_x}$ или $tg(\phi_H) = -\frac{\sigma B}{en} = -u_n B$.

На практике удобнее измерять не напряженность электрического поля, а соответствующую разность потенциалов (между гранями 3 и 4 на рисунке),

которая называется ЭДС Холла: $U_H = E_H \cdot d = -\frac{j_x B d}{en}$. Если выразить полный ток через плотность тока $(I = j_x d \cdot h)$, то

$$U_H = -\frac{IB}{enh} = \frac{R_H IB}{h},$$

где $R_H = (en)^{-1}$ — постоянная Холла.

В случае полупроводника р-типа проводимости в уравнении

$$E_y = E_H = -\frac{j_x B}{en}$$

следует изменить знак носителей заряда с -е на +е. Тогда будем иметь:

$$E_{H} = \frac{j_{x}B}{ep}, \quad tg(\phi_{H}) = -\frac{\sigma B}{ep} = -u_{p}B, \qquad U_{H} = -\frac{IB}{eph} = \frac{R_{H}IB}{h}, \quad где \quad p \quad -$$
концентрация дырок, u_{p} — их подвижность, $R_{H} = (ep)^{-1}$ — постоянная Холла для дырочного полупроводника. Сопоставляя последние формулы, можно видеть, что по знаку ЭДС Холла можно определить в эксперименте тип носителей заряда, а по величине R_{H} — их концентрацию. Кроме того, если возможно измерение и проводимости, и постоянной Холла, то по ним определяют подвижность носителей: $u_{p} = \sigma R_{H}$.

Теперь рассмотрим ситуацию, когда в полупроводнике есть и электроны, и дырки. Запишем общий вид уравнений движения для электронов и дырок в электрическом и магнитном полях: $m \frac{d\overline{v_n}}{dt} = -e\vec{E} - \frac{e}{c}[\overline{v_n}\vec{B}] - для$ электронов, $m \frac{d\overline{v_p}}{dt} = -e\vec{E} - \frac{e}{c}[\overline{v_p}\vec{B}] - для$ дырок. Проинтегрировав эти уравнения, и используя соотношение для подвижности $u_n = \frac{e(\tau)}{m_n}$, получим: $\overline{v_{n(p)}} = -u_{n(p)}\vec{E} - \frac{u_{n(p)}^2}{c}[\vec{E} \times \vec{B}]$. Помножив первое уравнение на e_n , а второе на e_p , получим уравнения для электронного и дырочного токов:

$$\overrightarrow{J_{n(p)}} = -en(p)u_{n(p)}\vec{E} - en(p)\frac{u_{n(p)}^2}{c}[\vec{E}\times\vec{B}].$$

Таким образом, полный ток:

$$\vec{j} = e(nu_n + pu_p)\vec{E} - e\frac{nu_n^2 + pu_p^2}{c}[\vec{E} \times \vec{B}],$$

или в скалярной форме:

$$j_{x} = e(nu_{n} + pu_{p})E_{x} - e\frac{nu_{n}^{2} + pu_{p}^{2}}{c}E_{y}B_{z} = j,$$

$$j_{y} = e(nu_{n} + pu_{p})E_{y} - e\frac{nu_{n}^{2} + pu_{p}^{2}}{c}E_{x}B_{z} = 0.$$

Поскольку магнитное поле слабое, то второе слагаемое в первом уравнении системы много меньше первого. С учетом этого, решив систему относительно E_y , получим $E_H = R_H j B$, $R_H = \frac{p u_p^2 - n u_n^2}{e(n u_n + p u_p)^2}$. Из этого выражения видно, что при $n \gg p$ $R_H = (en)^{-1}$, а при $n \ll p$ $R_H = (ep)^{-1}$. В случае собственного полупроводника, где $n = p = n_i$, $R_H = \frac{u_p - u_n}{e n_i (u_n + u_p)} = \frac{1 - b}{e n_i (1 + b)}$, где $b = \frac{u_n}{u_p}$. Согласно последней формуле $R_H < 0$ при b > 1 и $R_H > 0$ при b < 1.

Выше мы полагали, что все носители заряда имеют одно и то же время релаксации, иными словами — мы считали вероятность рассеяния независящей от скорости движения. При строгом рассмотрении необходимо учитывать распределение носителей по скоростям; следствием этого будет зависимость времени релаксации электронов (дырок) от их кинетической энергии. Описание кинетических явлений в ансамбле частиц при учете их распределения по энергии обычно выполняют с помощью кинетического уравнения Больцмана. Следствием рассмотрения эффекта Холла с помощью этого уравнения будет появление множителя $r = \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2}$ в выражении для постоянной Холла: $R_H = -r(en)^{-1}$ — для электронов, $R_H = -r(ep)^{-1}$ — для дырок, $R_H = \frac{r}{e} \frac{p u_p^2 - n u_n^2}{(n u_n + p u_n)^2}$ — для биполярной проводимости. Здесь $\langle \tau \rangle$ среднее время релаксации, $\langle \tau^2 \rangle$ — средний квадрат времени релаксации. Соответственно все полученные выше формулы, где есть множители $(en)^{-1}$ и $(ep)^{-1}$ верны с точностью до множителя r; в частности, для подвижности: $u_n{}^{H} = \frac{r\sigma}{en} = ru_n, \ u_p{}^{H} = \frac{r\sigma}{ep} = ru_p.$ Поэтому подвижность, определяемую с помощью эффекта Холла, называют холловской, в отличие от истинной (дрейфовой). Множитель *г* получил название фактора Холла.

Поскольку *r* определяется временем релаксации τ , то его величина будет зависеть от механизмов рассеяния носителей заряда. Подсчитано, что при рассеянии на акустических колебаниях кристаллической решетки $r = \frac{3}{8}\pi \approx 1,18$, а при рассеянии на примесных ионахr = 1,93. При низких температурах (для Ge T<250K, для Si T<100K) обычно доминирует рассеяние носителей на ионах примесей, а при высоких температурах (для Ge и Si — в том числе и при комнатной температуре) преобладает рассеяние на колебаниях решетки.

Как отмечалось выше, полученные нами результаты справедливы для случая слабого магнитного поля. Поскольку $\tau = \frac{\langle \lambda \rangle}{\langle v \rangle}$, то соотношение между длиной свободного пробега $\langle \lambda \rangle$ носителя заряда и радиусом его круговой орбиты в магнитном поле можно заменить на следующее: $\tau \ll T = \frac{2\pi}{\omega_c}$ — для слабого поля, $\tau \gg T = \frac{2\pi}{\omega_c}$ — для сильного поля, где T — период вращения частицы, ω_c — циклотронная частота (частота вращения носителя заряда по круговой траектории в магнитном поле с индукцией \vec{B}). Поскольку $\omega = \frac{qB}{m^*}$, то подставив ω_c в выражение выше, получим: $\frac{\tau\omega_c}{2\pi} = \frac{uB}{2\pi} \ll 1$ — для сильного поля, $\frac{\tau\omega_c}{2\pi} = \frac{uB}{2\pi} \gg 1$ — для сильного поля.

Приведенное определение сильного и слабого полей является классическим. Здесь не учитывается изменение энергетического спектра электрона в магнитном поле.

Экспериментальная установка

Характер проводимости полупроводников, концентрацию и подвижность носителей можно определить на установке, схема которой приведена на рис. 3.

Исследуемый образец полупроводника, изготовленный В виде прямоугольной пластинки с размерами l×d×h, указанными на держателе, помещается в постоянное магнитное поле, создаваемое электромагнитом. Величина поля между полюсами N, S пропорциональна току в катушках, коэффициент пропорциональности К указан на магните. Направленное движение носителей происходит под действием ЭДС источника линейно меняющегося напряжения. Падение напряжения на сопротивлении R, пропорциональное току через образец, и возникающая в точках (3), (4) разность потенциалов подаются на входы Х и У переходного модуля, NI CB-37F-LP. соединительный блок Специальным содержащего многожильным кабелем (SH37F37M) блок соединён непосредственно с платой аналого-цифрового преобразователя многофункциональной платы сбора данных National Instruments NI 6010, которая позволяет регистрировать осциллограммы сигналов на экранах виртуального осциллографа в YT и XY режимах средствами программного комплекса LabView. Плата NI 6010 установлена в слот расширения компьютера типа PCI. Максимальный диапазон принимаемых сигналов – ±5В, поэтому для сигналов большей амплитуды используются делители, которые уменьшают сигналы ДО регистрируемого диапазона. Измеренная разность потенциалов является

10

суммой холловской, контактной, термо-ЭДС, а также ЭДС за счет расположения контактов (3), (4) на неэквипотенциальных поверхностях. Для исключения указанных сторонних ЭДС можно воспользоваться тем, что они не меняют знак при изменении направления магнитного поля.

Методика измерений

Вначале были сняты осцилограммы зависимости U_{34} от $U_{1(2)}$ при разном положении полупроводника (рис. 4 для U_1 , рис. 5 для U_2 , B = 0,880 Тл).

		1
Ρ	'IIC	_ ≺
	uc.	-

Посредством соотношений

$$U_1 = U_{34} + U_{\text{доп}}$$
, $U_2 = -U_{34} + U_{\text{доп}}$, $U_H = \frac{1}{2}(U_1 - U_2)$

была определена зависимость U_H от I при разных значениях магнитного поля (рис. 6).

Затем была вычислена подвижность носителей заряда в полупроводнике (для I=0,012 A):

1. $n = \frac{I}{U_{\rm H}} \frac{B}{eh} = 3,69 \cdot 10^{19} \,{\rm m}^{-3}$ — концентрация носителей заряда в

рассматриваемом образце;

2. $\sigma = \frac{l}{RS} = 583,43 (OM \cdot M)^{-1}$ — проводимость образца; 3. $\mu = \frac{\sigma}{en} = 98,82 \frac{M^2}{(B \cdot c)}$ — подвижность носителей заряда в образце

Заключение

Графики зависимости U_{34} от U_1 (рис. 4) и от U_2 (рис. 5) позволяют определить тип проводимости образца – электронный (n). Кроме того, значение подвижности электронов в образце соответствует табличному значению для антимонида индия.

Приложение

Кристалл	$E_g(\mathbf{B})$	m_n^*	$m_p{}^*$	Подвижность	Подвижность	σ_1
	при	m_0	m_0	электронов	дырок (^{см²} / _{В-2})	(0м · см) ⁻¹
	300 K			$\left(\frac{CM^2}{B \cdot c}\right)$	D'C	
Кремний	1,14	0,26	0,49	1300	500	$5 \cdot 10^{6}$
(Si)						
Германий	0,67	0,12	0,3	3900	1900	$2 \cdot 10^{-2}$
(Ge)						
Антимонид	0,18	0.013	0,5	77000	750	$2 \cdot 10^{2}$
индия						
(InSb)						

Таблица 1. Физические характеристики некоторых полупроводников

I, A	В, Тл
0,5	0,118
1,0	0,235
1,5	0,347
2,0	0,461
2,5	0,580
3,0	0,690
4,0	0,880

Таблица 2. Зависимость индукции магнитного поля

в электромагните от силы тока в катушке

Список литературы

- Бонч-Бруевич В. Л., Калашников С. Г., Физика полупроводников. М.: Наука, 1990.
- Сивухин Д.В. Общий курс физики. М.: Физматлит: Изд-во МФТИ, 2002.
 Т. 3: Электричество.
- 3. <u>https://elmag.nsu.ru/doku.php?id=lab4:%D0%B4%D0%B2%D0%B8%D0%B6</u>
 <u>%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BD%D0%BE%D1%81%D0</u>
 <u>%B8%D1%82%D0%B5%D0%BB%D0%B5%D0%B9</u>
- 4. https://elektro.guru/osnovy-elektrotehniki/effekt-holla.html