МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физический факультет

Кафедра общей физики

Турло Вадим Сергеевич

КУРСОВАЯ РАБОТА

Измерение компонент магнитного поля импульсной линзы на стенде

Электромагнитный практикум, 2 курс, группа №20301

Научный руководитель:

<u>Д.А. Никифоров</u> Оценка научного руководителя

«____»____20 г.

Преподаватель практикума

<u>к.т.н., В.Т. Астрелин</u> Оценка преподавателя практикума

«____»____20 г.

Куратор практикума:

<u>к.т.н., В.Т. Астрелин</u> Итоговая оценка

«____»____20__г.

Новосибирск 2021

Аннотация

В данной работе приведены результаты измерений компонент магнитного поля линзы финального фокуса для ЛИУ. Выполнено качественное сравнение результатами моделирования. Полученные результаты измерений и С результаты моделирования имеют хорошее соответствие формы профиля между собой. Искажение аксиальной симметрии магнитного поля является следствием влияния подводящих проводов и асимметричного расположения ЧТО отверстий для них на корпусе линзы, подтверждается как В моделировании, так и при измерениях.

1. Введение

В настоящее время в ИЯФ СО РАН разрабатывается мощный линейный индукционный ускоритель (далее ЛИУ) для генерации мощного излучение рентгеновского излучения. Это образуется В результате взаимодействия электронного пучка из ЛИУ с конверсионной мишенью. Магнитная система такого ускорителя, обеспечивающая транспортировку и фокусировку пучка на мишени, состоит из импульсных соленоидальных линз. Точность расчетов динамики пучка в транспортном канале ускорителя существенно повышается, когда в программу по моделированию динамики пучка вводятся не расчетные, а измеренные распределения магнитных полей от магнитных элементов. Тоже можно сказать и для линзы финального фокуса, которая существенно отличается конструкцией и параметрами от стандартных линз, обеспечивающих транспортировку пучка. Возникающие в случае применения импульсных источников питания нелинейные скин-эффекты В магнитном экране соленоида сложно учесть при моделировании. Кроме того, экранировка вакуумной камерой приводит к появлению задержки между максимумом магнитного поля внутри вакуумной камеры и максимумом тока в соленоиде, которую важно знать и учитывать при настройке ускорителя. Важно отметить, что при осуществлении фокусировки центрированного пучка на входе в линзу финального фокуса было выявлено его значительное отклонение на мишени после фокусировки данной линзой. Это может свидетельствовать о наличии ошибок в изготовлении которые привели к появлению нежелательных поперечных компонент магнитного поля на оси линзы.

Целью работы являлось проведение измерений распределения продольного и поперечного магнитного поля на оси импульсной линзы финального фокуса для ЛИУ. Кроме этого необходимо было сопоставить результаты численного моделирования магнитных полей импульсной линзы с измеренными значениями.

2. Методика измерения импульсного магнитного поля

Наиболее простой и доступный метод измерения импульсных магнитных полей в диапазоне от нескольких десятков до нескольких тысяч Гаусс – Поэтому индукционный метод. магнитные измерения проводились индукционным датчиком на специальном стенде, который позволяет с высокой точностью интегрировать сигнал С датчика (производную магнитного поля) в интервале от нескольких микросекунд до десятков секунд.

Форму, габариты и число витков катушки для измерения импульсных магнитных полей выбирают исходя из величины и длительности измеряемого поля, и требуемой точности измерений. В нашем случае было изготовлено две катушки на капролоновом каркасе со средним диаметром 5 мм и числом витков 86 из медного провода диаметром 0.19 мм (Рисунок 1).

Рисунок 1. Измерительная катушка Калибровка измерительных катушек выполнялась путем измерений наводимой

электродвижущей силы (ЭДС) в катушке за счёт её перемещения из области постоянного магнитного поля величиной в несколько Тл, в область нулевого поля - магнитный экран. Магнитный поток, проходящий через неё изменяется по закону электромагнитной индукции: $d\varepsilon = -\frac{Nd\Phi}{dt}$, где Φ – магнитный поток, N – количество витков в катушке, $\varepsilon - ЭДС$, t – время. Магнитным потоком называют величину $\Phi = B \cdot S \cdot cos\alpha$, где B – модуль вектора магнитной индукции, S – площадь контура, через который проходит магнитный поток, α – угол между векторами B и нормалью к поверхности S. В нашем случае угол между вектором В нормалью к поверхности S был равен нулю, поэтому уравнение магнитного потока можно переписать $\Phi = BS$. Тогда уравнение электромагнитной индукции примет вид: $d\varepsilon = -\frac{dB}{dt}NS$, где величина NS является характеристикой катушки и не зависит от внешних факторов. Зная эту величину и ЭДС, измеряемую при изменении магнитного потока, можно вычислить магнитное поле.

3. Численное моделирование

Несмотря на то, что в задачи данной работы не входило численное моделирование линзы, необходимо привести его результаты, которые наглядно демонстрируют ошибки в изготовлении данной линзы. На рисунке 2 представлена фотография линзы модель которой была создана в пакете программ OPERA.

Рисунок 2. Фотография измеряемой линзы

Линза намотана на конус и содержит в себе 2 слоя по 40 витков. Также линза снабжена магнитным экраном из стали 10. Помимо этого в расчетах была учтена труба вакуумной камеры из нержавеющей стали со следующим параметрами: Mu=1.003; проводимость = 1.3698E+06 S/m. Основные параметры линзы приведены в таблице 1.

Материал брони	Сталь 10	
Габариты по железу брони	R=87 mm; L=275.8 mm	
Апертура	r=35-76 mm	
Толщина брони	5 mm	
Толщина катушки	5.2 mm	
Поле Вz в линзе (t= 3.12 мс)	0.419 T	
Интеграл поля Вz на оси (t= 3.12 мс)	98.110 T*mm	
Эффективная длина	234.42 mm	
Максимальный ток (t=1.95 мс)	152 kA*turn	
Запасенная энергия ($\int (\int HdB) dV$) (t=3.12 мс)	146.65 J	
Запасенная энергия ($\int (\int BdH)dV$) (t=3.12 мс)	161.55 J	

На рисунке 3 приведена смоделированная зависимость продольной компоненты магнитного поля в линзе при различных значениях времени (а значит тока). Измерения будут проводиться при максимуме тока (t=2.34ms)

На рисунке 4 приведен расчет поперечной компоненты магнитного поля в линзе при учете влияния только подводящих контактов, без учета асимметрии конструкции. Из графика видно, что максимум поперечного поля достигается в точке z=0, которая является точкой подведения контактов

Рисунок 3 – График магнитного поля на оси линзы значении поля (z=0 – окончание конической части ярма (меньшая сторона))

Рисунок 4 – График поперечной компоненты магнитного поля линзы значении поля (z=0 – окончание конической части ярма (меньшая сторона)) Из результатов моделирования были сделаны следующие выводы: -На выходе из линзы из-за выводов проводов образуется дипольное поле с максимальным значением около 42 Гс

-максимум поперечной компоненты поля наблюдается в точке подведения контактов

4. Описание стенда магнитных измерений

В состав стенда входит импульсный источник питания ГИД-1800 (рис.6. параметры приведены в таблице 2), радиостойка с крейтом управления и интегратором Volt - second to Digital Converter (VsDC2), цифровым компьютер. Внутри соленоида на оси расположены две катушки, в продольном и поперечном направлении, закрепленные внутри штанги из СТЭФ (см. рис. 1). Перемещение штанги с катушками осуществлялось с шагом 10 мм. Сигнал с катушки – производная магнитного поля, регистрируется с помощью интегратора VsDC2. Отношение шума интеграла к вольтсекундной площади импульса не более 10-6, ошибка интегрирования не хуже 10-5 на длительностях порядка 1 мс [2]. Основные параметры интегратора приведены в таблице 1. Измерение распределения продольного и поперечного магнитных полей вдоль оси линзы выполнялось путем перемещения измерительных катушек вдоль геометрической оси соленоида с шагом в 10 мм. Для повышения точности в каждой точке выполнялось по 3 измерения.

Рисунок 5. Пример сигналов, поступающих на вход интегратора. Синий сигнал – ток в линзе, красный – производная магнитного поля в измерительной катушке.

Рисунок 6. Стенд магнитных измерений

Таблица 2. Параметры VsDC2.

		-	-
Параметры		VsDC2 (CAN)	VsDC3(VME)
Ошибка интеграла относительно $U_{\rm шк}T_{\rm инт}$	$T_{\text{инт}} = 5 \text{ MKC}$	10^{-4}	
	$T_{\text{инт}} = 50 \text{ MKC}$	$5 \cdot 10^{-5}$	
	$T_{\text{инт}} \ge 500 \text{ MKC}$	10^{-5}	
Шум интеграла относительно $U_{\rm шк}T_{\rm инт}$	$T_{\rm mht} = 10 { m mkc}$	$5 \cdot 10^{-5}$	10^{-5}
	$T_{\text{инт}} = 1 \text{ MC}$	10^{-6}	$5 \cdot 10^{-7}$
	$T_{\text{инт}} \ge 500 \text{ Mc}$	$5 \cdot 10^{-7}$	10^{-7}
Нелинейность от $-U_{\text{max}}$ до $+U_{\text{max}}$		$\pm (2 \cdot 10^{-5})$	
Разрядность АЦП		24 бита	
Частота выдачи отсчётов F_{DRDY}		312,5 кГц	
Эффективная разрядность в полосе 110 кГц		17	18
Задержка по времени при внешних импульсах Старт/Стоп		21 ± 2 нс	21 ± 2 нс

5. Экспериментальная часть

Измерение распределения продольной и поперечных компонент магнитного поля импульсной соленоидальной конусной линзы финального фокуса ЛИУ. Параметры импульса тока: длительность 3 мс, амплитуда 1914 А.

1. Продольная измерительная катушка расположена на геометрической оси линзы с точностью не хуже 0.5 мм, которая определяется оснасткой. Отметка 0 мм соответствует тому, что катушка установлена в плоскости торца большого фланца линзы. Минимальный интервал между импульсами тока равен 88 секунд и определяется скоростью зарядки накопительных секций источника тока. На рисунке 8 показана измеренное и расчетное распределение продольного магнитного поля вдоль оси линзы.

Рисунок 8. Синий график – расчетное распределение продольного магнитного поля линзы, оранжевый график – измеренное распределение продольного магнитного поля линзы.

1. Радиальная измерительная катушка ориентирована вертикально. Отметка 0мм означает конец большого фланца линзы. Интервал импульсов и их длительность такая же. На рисунке 9 показана измеренная зависимость.

Рисунок 9. Измеренная зависимость вертикальной компоненты магнитного поля вдоль оси линзы.

2. Радиальная измерительная катушка ориентирована горизонтально. Интервал импульсов и их длительность те же. Отметка 0мм соответствует положению катушки в плоскости края фланца.

Рисунок 10. Измеренная зависимость горизонтальной компоненты

магнитного поля вдоль оси линзы

Разница между расчетными и измеренными данными объясняется несколькими причинами.

- неизвестно насколько точно совпадают геометрическая и магнитная оси линзы;

- точность выставки измерительной катушки является критчной в случае измерения поперечных компонент магнитного поля.

6. Результаты

измерено продольное и поперечное распределение магнитного поля
 вдоль геометрической оси соленоида;

· измерено влияние подводящих контактов на симметрию магнитного поля на оси соленоида.

·получено качественное соответствие расчетных данных и измеренных.

7. Список литературы

1. А. В. Иванов, «Динамика заряженных частиц и интенсивных пучков в стационарных полях». 2018, 228 с.

2. А. М. Батраков, И. В. Ильин, А. В. Павленко. «Прецизионные цифровые интеграторы сигналов с точной синхронизацией». Автометрия. 2015. Т. 51, № 1.