Предыдущая версия справа и слева
Предыдущая версия
Следующая версия
|
Предыдущая версия
|
lab5:common5 [2019/04/11 18:52] root_s [Содержание понятия «эквивалентные» для источников напряжения и тока] |
lab5:common5 [2019/04/11 18:54] (текущий) root_s [Эквивалентные схемы] |
| |
Наиболее очевидна ошибочность такого решения в случае, когда нагрузка представляет собой комплексное сопротивление, например, показанное на рис. 2,а. | Наиболее очевидна ошибочность такого решения в случае, когда нагрузка представляет собой комплексное сопротивление, например, показанное на рис. 2,а. |
{{ :lab5:002.png?400 |}} | {{ :lab5:002.png?500 |}} |
Перенос части нагрузки в $R_{i}' $, показанный на рис. 2,б, во--первых, изменяет фазу нового тока нагрузки $I_н'$ по отношению к фазе тока источника, чего делать нельзя, так как эквивалентный источник тока по определению должен обеспечивать те же самые напряжения и токи на нагрузке, что и замещаемый им реальный источник. Если в нагрузке на рис. 2,а происходят омические потери, вызванные протеканием тока по $R_н,$ то новая нагрузка представляет собой чисто реактивное сопротивление, не имеющее омических потерь. Это меняет энергетические соотношения в рассматриваемой схеме. Таким образом, схема на рис. 2,б ни в отношении величины тока нагрузки, ни в отношении фазы этого тока, ни в отношении расчета мощности в нагрузке не является эквивалентной схеме на рис. 2,а. | Перенос части нагрузки в $R_{i}' $, показанный на рис. 2,б, во--первых, изменяет фазу нового тока нагрузки $I_н'$ по отношению к фазе тока источника, чего делать нельзя, так как эквивалентный источник тока по определению должен обеспечивать те же самые напряжения и токи на нагрузке, что и замещаемый им реальный источник. Если в нагрузке на рис. 2,а происходят омические потери, вызванные протеканием тока по $R_н,$ то новая нагрузка представляет собой чисто реактивное сопротивление, не имеющее омических потерь. Это меняет энергетические соотношения в рассматриваемой схеме. Таким образом, схема на рис. 2,б ни в отношении величины тока нагрузки, ни в отношении фазы этого тока, ни в отношении расчета мощности в нагрузке не является эквивалентной схеме на рис. 2,а. |
| |
| |
В тех же случаях, когда по тем или иным причинам такое упрощение недопустимо, прибегают к замене реального элемента эквивалентной цепью, состоящей из нескольких идеализированных элементов. Таким образом, например, конденсатор с потерями и катушка индуктивности с заметной величиной активного сопротивления проводников могут быть заменены схемами, изображенными на рис. 3. | В тех же случаях, когда по тем или иным причинам такое упрощение недопустимо, прибегают к замене реального элемента эквивалентной цепью, состоящей из нескольких идеализированных элементов. Таким образом, например, конденсатор с потерями и катушка индуктивности с заметной величиной активного сопротивления проводников могут быть заменены схемами, изображенными на рис. 3. |
| {{ :lab5:003.png?500 |}} |
| |
Применение эквивалентных цепей значительно облегчает изучение процессов в электрических схемах. При этом можно ограничиться изучением свойств только трех идеализированных элементов \textit{R}, \textit{L} и \textit{С}, а все остальные случаи рассматривать как их комбинации. | Применение эквивалентных цепей значительно облегчает изучение процессов в электрических схемах. При этом можно ограничиться изучением свойств только трех идеализированных элементов $R, L$ и $С,$ а все остальные случаи рассматривать как их комбинации. |
| |
| |
| |
\noindent \textit{Рис. 3.} Эквивалентные схемы конденсатора и индуктивности | |
| |
| |
| |
| |