Это старая версия документа!
Рассмотрим систему проводников и связанную с ними электрическую схему, показанную на рис. 5а.
Между двумя пластинами 1 и 2 располагается изолятор 3 толщиной $\Delta$ и диэлектрической проницаемостью $\varepsilon $. Когда пластины располагаются максимально близко друг к другу, т.е. расстояние $D$ почти равно нулю, на пластину 2 подается напряжение $U$, в результате на потенциальных проводниках системы появится заряд равный:
$Q_{00}=(C_v+C_w+C_{\infty}+C_{12}+C_0)\cdot U_{00}$,
где $C_1=C_v+C_w+C_{\infty}$ — сумма емкости вольтметра $C_v$, паразитной ёмкости $C_w$ проводов, соединяющих вольтметр с плоским конденсатором (включая паразитную емкость пластины 2 на близкие заземлённые проводники, которую будем считать неизменной при проведении эксперимента), и ёмкости $C_{\infty}$ пластины 2 относительно «бесконечности». При вычислении заряда $Q_{00}$ к ёмкости $C_1$ нужно прибавить ёмкость подводящих проводов $C_0$ и, собственно, взаимную ёмкость пластин $C_{12}$. Подключенный к обеим пластинам вольтметр покажет при этом величину поданного напряжения $U_{00}$. Расстояние $D$ при этом должно быть достаточно мало (см. следующий раздел), чтобы заряд был не слишком мал.
После зарядки системы, подводящие провода отключаются. При этом отключается ёмкость $C_0$ вместе с зарядом, остающимся на ней, и вольтметр показывает новое значение $U_0$, соответствующее оставшемуся заряду
$Q_0=(c_1+C_{12}(D^*)$, (1.2.2)
где $D=D^*$ — расстояние, соответствующее моменту отключения проводов источника от схемы. При дальнейших манипуляциях, если можно пренебречь утечками заряда, заряд $Q_0$ сохраняется, а показания вольтметра будут изменяться с перемещением пластины 2 следующим образом:
$U(D)=\frac{Q_0}{C(D)}$, (1.2.3),
$\frac 1{C(D)}=\frac 1{C_1}+\frac{C_D+C_{\Delta}}{C_D\cdot C_{\Delta}}$, (1.2.4)
Будем в дальнейших расчетах считать, что даже при больших значениях $D$ ёмкость зазора между диэлектриком и пластиной 2 может быть, с небольшими погрешностями (см. задания к работе), вычислена, используя формулу для плоского конденсатора $C=\frac{S}{4\pi\cdot \delta z}$, где $\delta z$ — расстояние между пластинами, а – площадь пластин. Связь между измеряемой величиной разности потенциалов и параметрами установки в этом случае примет вид (проверьте это выражение): . (1.2.5) В уравнении есть при неизвестных параметра: , и . Очевидно, что для их определения в данном эксперименте необходимо выполнить минимум три измерения. Выберем, например, значения и . Получим систему уравнений
(1.2.6)
Решая систему (проверьте), вы получите значения неизвестных
(1.2.7)
Используя полученные значения, постройте график зависимости (1.2.5) и наложите на него экспериментальные точки. Объясните различие экспериментальных и расчётных значений.