Это старая версия документа!
Экспериментальные задания
Прежде чем начинать измерения, прочитайте все пункты задания до конца и лишь после этого приступайте к выполнению работы.
==1. Включение установки «Пояс Роговского»,== предварительная настройка приборов.
Включить генератор SFG-2110. Выбрать форму выходного сигнала. Для этого нажать кнопку «wave». На индикаторной панели будет высвечиваться форма сигнала: синус, меандр и треугольник. Выбрать меандр. Ручку амплитуды выходного сигнала AMPL установить на максимум.
Установить частоту выходного сигнала генератора. Набрать требуемое значение частоты (например 10). Выбрать значение единицы измерения (например kHz).
Выход генератора соединить с проводником, проходящим по оси пояса Роговского, в конце которого установлена нагрузка 50 Ом. С выхода этого проводника подать сигнал на первый канал осциллографа. На второй канал подать сигнал с выхода первого пояса.
Включить осциллограф Tektronix TDS1012. Когда дисплей выйдет на рабочий режим, нажать кнопку AUTO SET. На дисплее появятся сигналы, поданные на вход 1 и 2. В нижней части есть индикация чувствительности вертикальной и горизонтальной разверток каналов. Для ознакомления с широкими возможностями цифрового осциллографа следует обратиться к его описанию.
Установить скважность выходного сигнала с генератора в режиме меандра. Нажать SHIFT и «7». Затем набрать число «20». Оно высветится на дисплее. Нажать кнопку Hz/\%. Изменение скважности сигнала будет видно на осциллографе. При такой скважности рекомендуется выполнять работу.
Выполнить задания 2 — 4. Чтобы быстрее начать выполнять задания, можно рекомендовать для наблюдения свободных колебаний первого пояса установить частоту повторения импульсов на генераторе 10 кГц, в режиме интегрирования тока на собственной индуктивности $-$ 1 МГц, интегрирования тока на внешней емкости $-$ 200 кГц. После выполнения пунктов 2$-$4 с первым поясом, подобрать частоту генератора для второго пояса самостоятельно.
2. Определение собственных параметров пояса: емкости, индуктивности и активного сопротивления.
При подаче по центральному проводнику прямоугольного импульса тока с достаточно короткими фронтами после каждого из фронтов в поясе возникают свободные затухающие колебания с собственной частотой (см. например, Ч.I рис 20) $$ L_{0} =\frac{1}{4\pi ^{2} f_{0}^{2} C_{0} } . $$
Подключив дополнительную емкость $C_{1} $ известной величины параллельно выходу пояса и определив новую частоту $f_{1} $, можно найти емкость $C_{0} $ , используя соотношение \begin{equation} \label{GrindEQ__18_} \frac{f_{0}^{2} }{f_{1}^{2} } =\frac{C_{0} +C_{1} }{C_{0} } . \end{equation}
Собственная индуктивность находится из \begin{equation} \label{GrindEQ__19_} L_{0} =\frac{1}{4\pi ^{2} f_{0}^{2} C_{0} } . \end{equation}
По форме огибающей затухающих колебаний оценивается собственная постоянная затухания пояса $\tau =2L r^{-1}$ (см. работу 5.2 и разд. 4.1) и сопротивление $r$.
Для нахождения собственных параметров пояса подключаем выход пояса через измерительный коаксиальный кабель к осциллографу. При таком подключении нагрузкой пояса является емкость кабеля и входная емкость осциллографа. Удельная емкость кабеля равна 100 пФ/м, входная емкость осциллографа Tektronix TDS1012 – 20 пФ. Наблюдайте свободные затухающие колебания без и с дополнительно подключенными известными емкостями. Анализируя осциллограммы, определите собственные индуктивность, емкость, активное сопротивление и частоту для каждого пояса. Сравните полученное значение индуктивности с расчетной по формуле $$ L=\frac{\mu _{0} \mu }{2\pi } N^{2} b\ln \left(\frac{R+a}{a} \right), $$ а активное сопротивление $-$ с измеренным при помощью цифрового тестера.
3. Режим интегрирования тока на собственной индуктивности.
В качестве нагрузки пояса подключите активное сопротивление (рис. 2). С помощью уравнения 9 оцените рабочий диапазон длительности импульсов тока, для которого пояс будет правильно работать в этом режиме. Меняя длительность импульса тока и величину сопротивления, рассмотрите получаемые осциллограммы. Объясните наблюдаемые картины, учитывая, что на нагрузочном сопротивлении возникает напряжение, обусловленное импульсом тока $I_{1} \left(t\right)$ и собственными колебаниями пояса. Качественно зарисуйте в рабочей тетради осциллограммы при минимальном, среднем и максимальном значении нагрузочного сопротивлении и различных длительностях импульса. Подберите параметры, при которых форма импульса передается наилучшим образом для поясов 1 и 2. Осциллограмму зарисуйте в тетрадь. Для такого импульса измерьте коэффициент передачи по току и сравните с расчетной величиной $$ I_2 (t)=\frac{I_1(t)}{N}, \ \ \ \mbox{ при } \tau _{н} \ll \tau =\frac{L}{R_{н} +r}. $$
4. Режим интегрирования тока на внешней емкости.
Используйте в качестве нагрузки пояса интегрирующую цепочку (рис. 3). С помощью уравнения \begin{equation} \frac{L}{R_{н} +r} \ll \tau _{н} \ll \left(R_{н} +r\right)C_{н} . \end{equation} оцените рабочий диапазон длительности импульсов тока, для которого пояс будет правильно работать в этом режиме. Подберите параметры цепочки и длительность импульса, при которых форма импульса передается наилучшим образом для пояса 1. Зарисуйте в рабочей тетради осциллограммы и запишите параметры интегрирующей цепочки. Для таких импульсов сравните величину наблюдаемого сигнала с расчетной в соответствии с формулой \begin{equation} I_{1} \left(t\right)=-\frac{\left(R_{н} +r\right)C}{M} U_{C} \left(t\right)=-\frac{\left(R_{н} +r\right)C}{M} N\cdot U_{C} \left(t\right). \end{equation}